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IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for
societies working in information processing, IFIP's aim is two-fold: to support
information processing within its member countries and to encourage technology transfer
to developing nations. As its mission statement clearly states,

IFIP's mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development,
exploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates
through a number of technical committees, which organize events and publications.
IFIP's events range from an international congress to local seminars, but the most
important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers may
be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working
group and attendance is small and by invitation only. Their purpose is to create an
atmosphere conducive to innovation and development. Refereeing is less rigorous and
papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of selected
and edited papers.

Any national society whose primary activity is in information may apply to become a full
member of IFIP, although full membership is restricted to one society per country. Full
members are entitled to vote at the annual General Assembly, National societies
preferring a less committed involvement may apply for associate or corresponding
membership. Associate members enjoy the same benefits as full members, but without
voting rights. Corresponding members are not represented in IFIP bodies. Affiliated
membership is open to non-national societies, and individual and honorary membership
schemes are also offered. 
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The Conference 

1 Introduction 

The conference was held July 17-21, 2006 at the Hassayampa Inn in 
Prescott, Arizona, USA. Prescott, “Everybody’s Hometown”, was selected to 
provide an environment with minimal distractions during the event, while 
providing pre- and post-conference opportunities for family vacations and, 
hence, stimulating participation during the usually busy summer months. 
Prescott is a convenient starting point for vacations, including trips to the 
Grand Canyon, the Navajo Nation, and numerous state and federal parks.  
Built in 1927 as a “Southwestern luxury hotel” and recently renovated, the 
Hassayampa Inn, listed in the National Register of Historic Places and a 
member of the National Trust Historic Hotels of America, provided ample 
space for both the conference plenary sessions and quiet retreats to 
stimulate impromptu discussions. 

While interaction was emphasized throughout the conference by a format 
emphasizing questions and answers, Wednesday afternoon and evening 
provided a break from the intense immersion.  Informal interactions were 
stimulated through an introduction to Arizona’s Frontier Days, including a tour 
of the Sharlot Hall Museum featuring the early days of Prescott as the capital 
of the Arizona Territory, a visit to The Palace - the oldest frontier saloon in 
Arizona, and finally “An Evening with Mr. and Mrs. Wyatt Earp” presented by 
Wyatt Earp, a grandnephew of the Wyatt Earp of Tombstone fame, and his 
playwright/actress wife, Terry Earp.   

2. Program 

Following the successful patterns of past WG2.5 working conferences, 
the conference was scheduled for a full week with presentations grouped by 
topic. Scheduled presentations were made by twenty seven speakers in eight 
topical sessions. Twenty one presentations have been expanded to papers 
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included in these Proceedings.  Each speaker was allocated thirty minutes 
plus fifteen minutes for questions and answers.  An additional thirty minute 
discussion period concluded each topical session. The questions and 
answers were recorded by discussants in each session and are included in 
these proceedings. Speakers provided abstracts made available to 
participants via the conference website prior to the event.  These abstracts, 
slides from most presentations, and other information about the conference 
can be accessed at http://www.nsc.liu.se/wg25/woco9/. 

Monday, July 17
 8:45 Opening Session: J. Pool, Chair 
 9:00 Workflow Tools: W. Gropp, Session Chair; R. Boisvert, Discussant 
  D. Gannon: Scientific Gateways and Workflow Tools
 9:45 K. Kennedy: Why Performance Models Matter for Grid Computing
 10:30 Break 
 11:00 M. Vouk: Automation of Large-scale Network-Based Scientific 

Workflows using Kepler: Tools and Case Studies
 11:45 Discussion 
 12:15 Lunch 
 13:30 Application Experience: R. Boisvert, Session Chair; B. Einarsson, 

Discussant 
  P. Gaffney & T. Hopkins: Virtual Manufacturing - The Vision for 

Virtual Paint Operations 
 14:15 D. Schissel: Service-oriented Computation in Magnetic Fusion 

Research
 15:00 Break 
 15:30 D. Walker: Lessons Learned from the GECEM Portal
 16:15 A. Trefethen: e-Research and Applications
 17:00 Discussion 
 18:30 Reception 
 19:30 Conference Dinner 

Tuesday, July 18 
 8:45 Opening Session: J. Pool, Chair 
 9:00 Infrastructure: Services: A. Trefethen, Session Chair; M. Mu, 

Discussant 
  J. Treadwell: Open Grid Services Architecture
 9:45 B. Norris: Computational Quality of Service for Scientific Component 

Applications
 10:30 Break 
 11:00 T. Jackson: A Middleware Webservice Architrecture for Distributed 

Search Applications
 11:45 Discussion 
 12:15 Lunch 
 13:30 Infrastructure: Numerical Software: W. Enright, Session Chair; T. 

Hopkins, Discussant 
  X. Wang: THCORE: A Component Runtime for Service Oriented 

Numerical Software
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 14:15 K. Jackson: Python Tooling for Wrapping Numerical Codes as Grid 
Services

 15:00 Break 
 15:30 A. YarKhan: NetSolve to GridSolve: The Evolution of a Network 

Enabled Server
 16:15 B. Smith: A Test Harness TH For Numerical Applications and 

Libraries
 17:00 Discussion 
 20:00 Hot Topics: P. Gaffney, Session Chair 

Wednesday, July 19 
 8:45 Opening Session: J. Pool, Chair 
 9:00 Event Driven Applications: D. Gannon, Session Chair; W. Enright, 

Discussant 
  C. Douglas: Dynamic Data-Driven Wildfire Tracking
 9:45 G. Allen: Designing a Dynamic Data Driven Application System for 

Coastal and Environmental Modeling
 10:30 Break 
 11:00 S. Nadella: SPRUCE: A System for Supporting Event-Driven and 

Urgent High-Performance Computing
 11:45 B. Plale: Dynamic Environment Driven Computational Science and 

its Terascale Data: Keeping the Human in the Loop
  Discussion (See Thursday evening) 

Thursday, July 20 
 8:45 Opening Session: J. Pool, Chair 
 9:00 Applications: M. Thune, Session Chair; I. Reid, Discussant 
  M. Garbey: Efficient Algorithm to Compute PDEs on the Grid
 9:45 J. Alameda: On the Use of Services to Support Numerical Weather 

Prediction
 10:30 Break 
 11:00 J. Padget: Mathematical Service Discovery
 11:45 Discussion 
 12:15 Lunch 
 13:30 Applications; Continued: M. Vouk, Session Chair; P. Hemker, 

Discussant 
  H. Usami: A Problem Solving Environment based on Grid Services: 

NAREGI-PSE
 14:15 M. Aoyagi: Grid Enabling of Nano-Science Applications in NAREGI
 15:00 Break 
 15:45 S. Goasguen: Grid Architecture for Scientific Communities
 16:15 B. Applebe: Scientific Software Frameworks and Grid-enabled 

Applications - StGermain Deployment and Applications Experiences
 17:00 Discussion 
 20:00 Discussion: J. Pool, Session Chair; Event Driven Applications

Friday, July 21 
 8:45 Opening Session: J. Pool, Chair 
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 9:00 Grid-based Imaging: B. Ford, Session Chair; M. Vouk, Discussant 
  V. Boccia: MedIGrid: A Medical Imaging PSE for Computational 

Grids
 9:45 D. Keyes: Grid-based Image Registration
 10:30 Break 
 11:00 Discussion 
 11:30 Conference Summary; Strategy for Future Activities
 12:15 Lunch 

3. Organization 

The conference was sponsored by IFIP, organized by the IFIP Working 
Group on Numerical Software (IFIP WG2.5) and the Center for Advanced 
Computing Research at the California Institute of Technology in cooperation 
with the Society for Industrial and Applied Mathematics.  General plans for 
the conference and the following organizational structure were approved by 
WG2.5 during its annual meeting in 2004: 

Chair
o James C. T. Pool, Center for Advanced Computing Research, 

California Institute of Technology 
Deputy Chair

o Brian Ford, Mathematics Faculty, Oxford University and Founding 
Director, Numerical Algorithms Group  

Executive Committee 
o Conference Chair 
o Deputy Conference Chair 
o Program Committee Chair 
o WG2.5 Chair: Ronald F. Boisvert, Mathematical and 

Computational Sciences Division, National Institute of Standards 
and Technology 

Program Committee 
o Chair: William D. Gropp, Mathematics and Computer Science 

Division, Argonne National Laboratory 
o Dennis Gannon, Department of Computer Science, Indiana 

University 
o Jennifer Schopf, Mathematics and Computer Science Division, 

Argonne National Laboratory and UK National e-Science Centre, 
University of Edinburgh 

o Masaaki Shimasaki, Department of Electrical Engineering, Kyoto 
University 

o Michael Thuné, Department of Information Technology, Uppsala 
University 

o Anne Trefethen; Interdisciplinary e-Research Centre; Oxford 
University and UK e-Science Core Programme, Engineering and 
Physical Sciences Research Council 
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o Conference Chair 
o Conference Deputy Chair 
o Proceedings Co-Editors 

Proceedings Co-Editors
o Patrick W. Gaffney, Bergen Software Services International A/S, 

Bergen, Norway
o Conference Chair 

Local Arrangements and Conference Support 
o Sarah Emery Bunn, Center for Advanced Computing Research, 

California Institute of Technology 
o Charles Chapman, Center for Advanced Computing Research, 

California Institute of Technology 
o Santiago Lombeyda, Center for Advanced Computing Research, 

California Institute of Technology  
o Doris M. Pool 
o Susan Powell, Center for Advanced Computing Research, 

California Institute of Technology 

4. Attendees 

The forty six attendees, including eighteen members of WG 2.5, came 
from ten different countries:  

Jay Alameda, National Center for Supercomputing Applications, United 
States

Gabrielle Allen, Louisiana State University, United States
Mutsumi Aoyagi, Kyushu University, Japan  
Bill Applebe, Victorian Partnership for Advanced Computing, Australia  
Vania Boccia, University Of Naples & Southern Partnership for Advanced 

Computational Infrastructures, Italy  
Ronald Boisvert, National Institute of Standards and Technology, United 

States
Pasquale Caruso, University Of Naples & Southern Partnership for 

Advanced Computational Infrastructures, Italy  
Craig Douglas, University of Kentucky, United States
Bo Einarsson, Linkoping University, Sweden  
Wayne Enright, University of Toronto, Canada  
Brian Ford, Oxford University, United Kingdom  
Pat Gaffney, Bergen Software Services International, Norway  
Dennis Gannon, Indiana University, United States  
Marc Garbey, University of Houston, United States  
Sebastien Goasguen, Purdue University, United States  
William D. Gropp, Argonne National Laboratory, United States  
Richard J. Hanson, Visual Numerics, Inc., United States  
Pieter Hemker, Centrum voor Wiskunde en Informatica, Netherlands  
Tim Hopkins, University of Kent, United Kingdom  
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Keith Jackson, Lawrence Berkeley National Laboratory, United States  
Tom Jackson, University of York, United Kingdom  
Ken Kennedy, Rice University, United States
David Keyes, Columbia University, United States  
Osni A. Marques, Lawrence Berkeley National Laboratory, United States  
Robert Meersman, Vrije Universiteit Brussel, Belgium  
Mo Mu, Hong Kong University of Science and Technology, China  
Sara Murphy, Hewlett-Packard, United States  
Suman Nadella, Argonne National Laboratory, United States  
Boyana Norris, Argonne National Laboratory, United States  
Julian Padget, University of Bath, United Kingdom  
Beth Plale, Indiana University, United States  
Jim Pool, California Institute of Technology (Retired), United States  
Ian Reid, Numerical Algorithms Group Ltd, United Kingdom  
David Schissel, General Atomics, United States  
Masaaki Shimasaki, Kyoto University, Japan  
Brian Smith, Numerica 21 Inc & University Of New Mexico, United States  
Mark Stalzer, California Institute of Technology, United States  
Mary Thomas, San Diego State University, United States
Michael Thuné, Uppsala University, Sweden  
Jem Treadwell, Hewlett-Packard, United States  
Anne Trefethen, Oxford e-Research Centre, United Kingdom  
Hitohide Usami, National Institute of Informatics, Japan  
Mladen A. Vouk, North Carolina State University, United States  
David Walker, University of Cardiff, United Kingdom  
Xiaoge Wang, Tsinghua University, China  
Asim YarKhan, University of Tennessee at Knoxville, United States  
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Preface 

In 1984 W. J. Cody, an early member of the IFIP Working Group on Numerical 
Software (WG 2.5), reviewed progress in numerical software during the previous 
two decades and then identified future challenges posed by the rapid advances in 
computing technology1:

decline of the local central computing facility 
o isolated from research 
o libraries neglected 

rise of personal computing 
o isolated from everyone 
o poor software 

rise of remote computing facilities 
o good libraries 
o resident specialists 

Cody’s foresight was remarkable.  The establishment of supercomputer centers 
coupled with development of distributed computing, including the recent 
development of grid infrastructure, has resulted in users being increasingly 
dependent on software resources on remote systems.  

Indeed, the use of the Internet to bring together providers and users of resources 
has become commonplace.  One of the earliest such tools was Netlib, which started 
in the 1980’s as an email-based application for distributing numerical software.  
Other services, such as NetSolve (for linear algebra) and NEOS (for nonlinear and 
optimization problems) have demonstrated the potential of grid-based problem 
solving environments (PSEs)2. Domain specific PSEs, such as Cactus (developed for 
numerical relativity) and PYRE (developed for shock physics), have been applied 
outside their original discipline to generate new PSEs and are being extended to 
exploit grid technology.  

The development and deployment of numerical software for grid-based problem 
solving environments must ultimately be driven by the needs of scientists and 
engineers.  However, the major changes in the computing environment during the 
past few years and the advances, both anticipated and unforeseen, during the next 
few years pose new challenges to the numerical software community as it responds 
to these needs.  There is more to making use of a grid-based service than simply 
knowing its web address. Does the service work reliably?  What are its limitations?  
Can it be combined with other services?  There are also opportunities for improving 

1 W. J. Cody, “Second Thoughts on the Mathematical Software Effort: A 
Perspective”, Proceedings of the Symposium on Computational Mathematics – 
State of the Art – Held at Argonne National Laboratory September 20-21, 1984 in 
Honor of James H. Wilkinson, ANL/MCS-TM-42, December, 1984. 

2 In this context, the phrase “Grid-Based Problem Solving Environments” is, in many 
cases, synonymous with “science gateways” or “science portals”, nomenclature 
introduced recently by the grid community. 
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the ability of applications to use the best numerical software, for example, by 
simplifying the acquisition and use of high-quality numerical software.  The 
development of numerical software can benefit from the experience of the scientific 
and engineering communities using and developing new grid-based PSEs, for 
example, defining interfaces more appropriate for integrating numerical software 
into grid-oriented applications and exploiting test sets and tools for comparing 
different methods.   

The IFIP Working Conference on Grid-based Problem Solving Environments: 
Implications for Development and Deployment of Numerical Software was, 
therefore, planned to bring together four communities: 

users of both grid-based and traditional problem solving environments; 
developers of both grid-based and traditional problem solving 
environments; 
developers of grid infrastructure; and 
developers of numerical software 

for a week of intensive interaction to address issues including, but not limited to: 
accuracy contracts and software services; 
standards for problem specification; 
service models for the use of numerical software; 
using the grid to link numerical and other services together; 
experiences with web-based numerical services; 
application-oriented numerical interfaces such as web portals; 
software deployment issues including updates and bug fixes; 
large data (including data security) and grid-based numerical software; 
grid-based services as an alternative to deployment; and 
evaluation and comparison of both production and research software. 

The conference, WG2.5’s ninth working conference since 1978, built upon the 
experience and insights gained during past working conferences organized by 
WG2.5, in particular, “WoCo4: Problem Solving Environments for Scientific 
Computing”3; “WoCo6 Programming Environments for High-Level Scientific 
Problem Solving”4; and “WoCo8: Software Architectures for Scientific Computing 
Applications”5.

The conference was sponsored by IFIP, organized by the IFIP Working Group on 
Numerical Software and the Center for Advanced Computing Research at the 
California Institute of Technology in cooperation with the Society for Industrial and 
Applied Mathematics.  The conference was supported by a major contribution from 
Hewlett-Packard and additional contributions from Intel, Numerical Algorithms 

3 Editors: B. Ford, F. Chatelin; Problem Solving Environments for Scientific 
Computing; North Holland, Amsterdam; 1987; ISBN 0-444-70254-7 

4 Editors: P. W. Gaffney, E. N. Houstis; Programming Environments for High-Level 
Scientific Problem Solving; North-Holland, Amsterdam; 1992; ISBN-0-444-
89176-5 

5 Editors: R. F. Boisvert, P. Tang; The Architecture of Scientific Software; Kluwer 
Academic Publishers, Boston; 2001; ISBN 0-7923-7339-1 
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Group, and Visual Numerics.  Caltech’s Center for Advanced Computing Research 
contributed staff effort necessary for planning and implementing the conference. 

Twenty one of the twenty seven presentations at the conference have been 
expanded into papers included in these Proceedings.  The presentations were 
scheduled in topical groups.   A feature distinguishing the conference is the 
question/answer sessions both after each presentation and after a topical group – the 
discussions in these sessions are included in these proceedings.  Two particular 
contributions are also included.  Observations on WoCo9, offers a summary of the 
meeting, from the perspective of the Program Committee Chair, William D. Gropp.  
Discussions during the conference stimulated Brian T. Smith to prepare a brief 
paper, Future Directions for Numerical Software Research, emphasizing the need for 
“software that evaluates the accuracy of the computed results or more importantly 
the sensitivity of the numerical results to the data and the platforms on which the 
computation occurs”.  Abstracts, slides from most presentations, and other 
information about the conference can be accessed at 
http://www.nsc.liu.se/wg25/woco9/. 

The success of the conference was the result of the Program Committee’s 
guidance and selection of speakers; therefore, we wish to thank: William D. Gropp; 
Dennis Gannon; Jennifer Schopf; Masaaki Shimasaki; Michael Thuné; and Anne 
Trefethen.  We also wish to thank the members of WG 2.5 who contributed 
nominations of speakers and participants. We thank the speakers for their efforts to 
delineate and address the challenges to the numerical software community by the 
rapidly emerging and changing grid technology and the participants for their 
insightful questions that stimulated discussions throughout the week.  The session 
chairs and discussants deserve recognition for the difficult task of maintaining the 
conference schedule while stimulating discussion and recording the questions and 
answers included in these proceedings.  The staff of the Center for Advanced 
Computing Research at the California Institute of Technology, Sarah Emery Bunn, 
Santiago Lombeyda, Charles Chapman, and Susan Powell, provided excellent 
support for the conference planning and implementation. 

We thank Ronald F. Boisvert, WG 2.5 Chair, for his support and guidance during 
the conference planning.  We especially thank Brian Ford, Conference Deputy Chair, 
for his assistance from the earliest planning through the conference implementation 
to the preparation of these proceedings.  Patrick Gaffney, the principal editor of these 
proceedings, deserves special thanks and acknowledgement for his continuing and 
persistent efforts to obtain and prepare the papers and discussion dialogues for these 
proceedings. 

Finally, I wish to thank my wife, Doris M. Pool, for her assistance both before 
and during the conference and for her patience during the months prior to the 
conference when a multitude of tasks for our new home near Prescott were 
“temporarily delayed”. 

James C. T. Pool 
Conference Chair
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WORKFLOW TOOLS

W. Gropp, Session Chair; R. Boisvert, Discussant

D. Gannon: Programming Paradigms for Scientific Problem Solving Environments

K. Kennedy: Why Performance Models Matter for Grid Computing

M. Vouk: Automation of Network-Based Scientific Workflows

Panel Discussion



Programming Paradigms for Scientific Problem
Solving Environments

Dennis Gannon, Marcus Christie, Suresh Marru, Satoshi Shirasuna,
Aleksander Slominski

Department of Compute Science, School of Informatics,
Indiana University,
Bloomington, IN 47401
gannon@cs.indiana.edu

Summary. Scientific problem solving environments (PSEs) are software platforms
that allow a community of scientific users the ability to easily solve computational
problems within a specific domain. They are designed to hide the details of general
purpose programming by allowing the problem to be expressed, as much as possible,
in the scientific language of the discipline. In many areas of science, the nature of
computational problems has evolved from simple desktop calculations to complex,
multidisciplinary activities that require the monitoring and analysis of remote data
streams, database and web search and large ensembles of supercomputer-hosted
simulations. In this paper we will look at the class of PSE that have evolved for these
“Grid based” systems and we will consider the associated programming models they
support. It will be argued that a hybrid of three standard models provides the right
programming support to handle the majority of the applications of these PSEs.

1 Introduction

Domain specific problem solving environments have a long history in computing and
there are several examples of widely used tools that are also commercial successes.
For example Mathematica [1] provides a platform for doing symbolic mathematics
and related visualization tasks using a programming language that is designed with
mathematical primitives as a basic component of the type system. Another example
is Matlab [2], which is widely used in the scientific community to study problems
requiring matrix manipulations or other linear algebra operations. In the area of
computer graphics PSE like AVS and Explorer [3] pioneered the use of programming
by component composition to build visualization pipelines. This same approach is
used in SciRun [4] and many of the other systems described below.

In recent years, we have seen a shift in the nature of the problems scientists
are trying to solve and this is changing the way we think about the design of PSEs.
Specifically, many contemporary computational science applications require the inte-
gration of resources that go beyond the desktop. Remote data sources including on-
line instruments and databases and high-end supercomputing platforms are among
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the standard tools of modern science. In addition multidisciplinary collaborations
involving a distributed team of researchers are becoming a very common model of
scientific discovery. Grid computing was invented to make it easier for applications
and research teams to pool resources to do science in such a distributed setting.
Grids are defined as a service oriented architecture that allows a group of collabo-
rators, known as a virtual organization (VO), to share access to a set of distributed
resources. There are three primary classes of core services that Grids provide that
make it easier to build PSEs that use distributed systems. These services are:

• Security - authentication and authorization
• Virtualization of Data Storage
• Virtualization of Computation

The PSE that is built on top of a Grid service framework is often called a
science gateway, because it provides a portal for a community to access a collection
of resources without requiring them to be trained in the distributed systems and
security technology that the Grid is built upon. As illustrated in Figure 1, the
user’s desktop interaction is through a browser and other tools which can be started
with a mouse click in the browser. A remote server mediates the user’s interaction
with the Grid security services, the virtual data storage and metadata catalogs and
application resources. The user’s programs are represented as workflows that are
executed by a remote execution engine.

Figure 1. The organization of top level services in a science gateway PSE.

In this paper we will look at the problem solving programming model that is
evolving for these Grid science gateway PSEs and suggest ways in which it can be
extended in the future.
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2 Programming in a Science Gateway PSE

The access point to a science gateway is usually based on a web portal that allows
users access to the collective computational and data management resources of the
underlying Grid. There are many examples of these gateway portals currently in
use. The TeraGrid web site (http://www.teragrid.org) has links to many of these.
They include

• The National Virtual Observatory (NVO), a gateway for astronomical sciences.
• Linked Environments for Atmospheric Discovery (LEAD), a PSE portal for

mesoscale weather prediction.
• Network for Earthquake Engineering Simulation (NEES), a gateway for earth-

quake hazard mitigation.
• The GEOsciences Network (GEON), a geophysics gateway.
• Network for Computational Nanotechnology and nanoHUB, a PSE for access to

nanotechnology tools.
• The Earth System Grid (ESG), a portal for global atmospheric research.
• The National Biomedical Computation Resource (NBCR), a gateway focused on

integrative biology and neuroscience
• The Virtual Laboratory for Earth and Planetary Materials (VLAB), which fo-

cuses on materials research.
• The Biology and Biomedicine Science Gateway (The Renci Bioportal) which

provides resources and tools for molecular biosciences.
• The Telescience Project, a gateway for neuroscience biology.

This is only a small sample. There are many other significant gateway projects
in the U.S., Europe and Japan. While there are many unique features supported
by these gateways, they also share many common attributes. Perhaps the most
important feature they all share are mechanisms that provide access to community
data. Science has become more data driven. The Scientists and engineers need to be
able to search for, discover, analyze and visualize the data produced by instruments
and computational experiments. They need to have mechanisms to discover new
data based on searchers of metadata catalogs and they need tools to extract this
data and save it in a gateway workspace for later use.

Once a scientist has collected the data (or identified the required data sources),
he or she must begin the process of analyzing it. The data is frequently used as the
input to a large simulation, a data mining computation or other analysis tool. A
simple approach to the design of a PSE is to wrap up all the important application
components and present a web portal user-interface page to the user for each one.
For example, a simulation program may require one or two standard input files and
a desired name for the output file or files. These may be exactly what is required
to run the simulation program from the command line. The advantage of providing
the input parameters in a portal web page is that we can transfer the complexity of
selecting the best computer to run the application and establishing all the needed
libraries and environment variables to the back-end Grid system. The user need only
identify the input and output data set names.

While a simple web interface to individual applications is useful, life is seldom
this simple. Specifically, the data is seldom in exactly the form that the analysis tools
expect, so transformations must be applied to make it fit. These transformations
may be format conversions, data sub-sampling, or interpolation. The task may also
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involve data assimilation, where multiple data sources must be merged or aligned
in a particular way to meet the requirements of the simulation task. There may be
many such preprocessing tasks and the analysis/simulation part of the activity may
require the use of more than one package. Finally, there may be post-processing to
create visualizations or other reports. And, as with most scientific experiments, the
sequence of transformations, data analysis, mining, simulation, and post processing
must be repeated in exactly the same way for many different input data samples.
Programming the sequence of steps required to do such an analysis scenario is known
as workflow design and this term is now in common use in the e-Science community.

The second most important feature of any science gateway PSE is to provide a
mechanism for users to create workflow scripts that can be saved and later bound
to input files and executed automatically using the remote grid resources. A recent
study [5] has identified a dozen popular workflow tools used by these PSEs. The four
most commonly used tools are Kepler [6], which is used in a variety of application
domains, Taverna [7], a common tool for life-science workflows, Pegasus [8], used
by many large physics applications, and BPEL [9], the industry standard for web
service orchestration. In a later section of this paper we describe how BPEL has
been integrated into the LEAD science gateway.

3 Compositional Programming Models in e-Science

To see how these tools work we need to look at the semantics of their graphical
composition. Within the e-Science community, the primary model of workflow com-
position is based largely on macro-dataflow concepts. The idea is very simple. Scien-
tific analysis is based upon transformation of data. An experiment begins with raw
data. These data are often derived from experimental measurement, such as from a
collection of instruments. The data must be pre-processed or ”assimilated” into a
coherent set of inputs to analysis or simulation packages. The output is then routed
to final analysis or visualization tools. This is “programmed” by using a graphical
tool which uses icons to represent the individual tasks as components in a workflow.
As illustrated in Figure 2, each workflow component has one or more inputs and one
or more outputs. Each input represents a data object or “message” that is required
to enact the component and each output represents a result data message. The data

Figure 2. Each icon represents a process “component” with one or more required
inputs and one or more output data objects.
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object may be a numerical value, a string or the URI of a file. In some systems the
data object may be a continuous stream of data to be processed. As illustrated in
Figure 3, two components may be composed if the output of one component can
serve as a valid input to another component. ”Unbound” inputs represent the data
sources for the workflow and the unbound outputs are the final data products.

Figure 3. The components may be composed. In this case one result from compo-
nent X is used as an input to component Y. A, B, and C are unbound inputs which
must be supplied by the user at runtime.

In the typical system based on this model, the programmer drags icons onto a
pallet and wires together the dataflow for the experiment. Figure 4 illustrates the
interface to the XBaya system used in the Linked Environments for Atmospheric
Discovery (LEAD) project [10, 11].

Figure 4. The XBaya workflow composition tool used to build a storm forecasting
workflow.
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Unfortunately, there are several problems with this basic model of dataflow
driven workflow as described above. The first problem relates to the way compo-
nents are connected. When is the output of one component suitable as an input to
another component? Clearly, if they have conflicting simple types, such as providing
a String as an input to something that is expecting a Float, then it is easy for a
rudimentary type system to detect the error. But most problems are due to subtle
semantic differences between the content of the message that is passed. For example,
in large systems, the message often only contains the URI of a data file that is stored
on a remote resource. How do we know if the data file has the right format or con-
tent to be used by the destination component? The solution to this problem lies in
providing complete information about the exact semantics and format of each input
and output. This metadata needs to be attached to the component and some form
of metadata analysis would be required to check compatibility. Without a common
metadata schema, a component provided by one group of researchers cannot be used
by another group. Consequently, it is up to the scientist composing the workflow to
understand this issue.

The second problem with this simple model is that it does not take into account
the control dependencies that a typical computer program uses. For example, condi-
tionals and iteration are difficult to express in a language where the only operation
is the composition of directed acyclic graphs. However, it is not difficult to overlay
additional control operations over the dataflow. For example, a conditional can be
expressed by a component (Figure 5) that takes two inputs, a value message, and a
conditional predicate that the message must satisfy. There are two outputs. If the
predicate evaluates to true, then the value is forwarded out one output. If the value
is false, the other message is generated.

Figure 5. A simple conditional element with two inputs: a value and a predicate.
Based on the predicate value one of the output messages is generated.

Another essential component of any complete e-science workflow programming
tool is the expression of iteration. There are two cases to consider. The first is the
classical case of a “while” loop. As illustrated in Figure 6, the input is a predicate, an
initial iterate value and a set of data values. The predicate is applied to the iterate
value and if the result is true, the iterate value and data values are passed to a
subgraph. The subgraph transforms both the data values and applies some function
to the iterate value. These are fed back to the while control node and the test is
repeated.

The second form is a parallel “for each” that can be used when you wish to
execute a subgraph for each element of a set of data values. In this case the subgraph
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Figure 6. A “while” loop and a parallel “for each” element.

is also supplied with an additional “iteration” index so the different invocations of
the subgraph can be uniquely identified. This additional index is important when the
subgraph must create a side-effect outside the body of the workflow. For example,
when an element of the workflow creates a file, it must be distinguished from the
file generated by the other instances. However, the exact semantics of how such an
iteration index is propagated to the body of a “for each” loop is non-trivial and not
a topic for this paper.

There are other standard features of workflow composition tools in this category.
For example, it is important to be able to encapsulate any valid composed workflow
as a component which can be used in other workflows.

Finally a topic that is always overlooked by e-Science workflow systems is that
of exceptions. An exception occurs when a specific component realizes that it cannot
correctly process an incoming message. As with any modern programming language,
it is essential that the system have a mechanism to capture these runtime exceptions
and deal with them. The model often used in programming languages, where a
block of code is encapsulated in a “try” block which is followed by a “catch” block
which is responsible for handling the exceptional conditions, can be used in graphical
dataflow-based systems. In the graphical case we can simply identify a subgraph
that may throw an exception and provide a description for a replacement “catch”
subgraph. The exceptions that are the most frequent are those that are related
to access to remote resources. For example, a remote service that fails to respond
because of a network or other resource failure. In these cases it is often better to
handle the problem at a lower, resource allocation level than at the abstract workflow
graph level. A situation that may be handled at the graph level could be one where
a request to an application component is simply too large or, for some other reason,
too difficult to process. In these cases, the workflow designer may know that an
alternative service exists that can be used in special cases like this.
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4 The Service Architecture of a Science Gateway PSE.

The science gateway PSE programming model we have described so far is based on
building applications by composing application services. The LEAD gateway is like
many others in that the components services are implemented as Web services. This
allows us to use standard robust middleware concepts and tooling that is widely
used in the commercial sector. However, large-scale computational science is still
the domain of big Fortran applications that run from the command line. To use
these applications in a Web service based workflow we need to encapsulate them
as services. To accomplish this we use an Application Factory Service [12], which
when given a description of an application deployment and execution shell script,
automatically generates a web service that can run the application. As illustrated
in Figure 7, the service takes as input command-line parameters and the URLs
of any needed input files. The service automatically fetches the files and stages

Figure 7. The application services provide a mechanism to execute applications on
behalf of the user on remote resources.

them in a subdirectory on the machine where the application is to run. It then
uses a remote job execution tool (Globus GRAM [13]) to run and monitor the
application. Finally the output files are pushed to the data storage facilities. During
the invocation of the service the progress of the data transfers and the monitoring
of the application are published as “events” to a message notification bus. The bus
relays the messages to listening processes including the user’s private application
metadata catalog. This allows the user to consult the catalog from the portal to see
the status of the execution.

To tie this all together we need to fill out a more complete service oriented archi-
tecture (SOA). The portal and workflow composer are only one piece of the system.
One important component is the workflow engine. While most e-Science workflow
tools also double as the execution engine, the XBaya system is actually a compiler.
It can either directly execute the workflow or it can compile a python program
which, when run, does the execution, or it can generate a BPEL document. BPEL is
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the industry standard for web service orchestration and many commercial and open
source execution engines exist. The importance of having an execution engine that
is separate from the composition tool cannot be understated. Science workflows can
take a very long time to execute. This is especially true in the case where a workflow
is driven by data from instruments where an event from the instrument may not
come for months! The execution engine must be able to retain the state of the work-
flow in persistent storage so that it can survive substantial system failures. Even
the workflow engine may need rebooting. Figure 8 illustrates the parts of the SOA
that are directly involved in the execution of the workflows. The only detail of the

Figure 8. The organization of services in a science gateway PSE.

SOA workflow execution we have not discussed is the process of resource allocation
and brokering. When a workflow is composed it is in an abstract form: the specific
application services used in the graph are not bound to specific instances of services
ready to run the application on specific hosts. The application factory service is
responsible for instantiating the application services, but the specific instances are
selected by a resource brokering and workflow configuration service. There are many
ways to do resource brokering and this topic is far beyond the scope of this paper.

It should also be noted that we have not described the complete picture of the
the SOA for an e-Science PSE. A major component not discussed here is the data
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subsystem. e-Science revolves around data. The workflow system only transforms
the data. This topic is treated in another paper in this workshop and elsewhere
[14, 15].

5 Event Bus based PSE organization.

There are other approaches to building a PSE programming system that are often
overlooked because the dataflow graph model is so intuitive for scientists. Rather
than thinking in terms of composing applications as explicit dataflow/control flow
graphs, we can consider the possibility of program components that respond to their
own environment in productive ways. The concept is based on an information bus
as illustrated in Figure 9. In this model a component “subscribes” to messages of
some type or “topic” or containing certain content. Any component may “publish”
messages on some topics for others to hear. To understand this, we should consider
an example. Data from an instrument is gathered and published by an instrument
component sitting on the bus. The user inserts data filters onto the bus which
captures the data events and transforms them and republishes them. These events
are captured by a data analysis component, which publishes results. The results
are captured by different rendering tools. This type of system, which resembles a
blackboard model [11], is extremely flexible and dynamic.

Figure 9. The message bus architecture allow a more dynamic organization than
the fixed dataflow model of execution.

This information bus model is the most flexible for integrating user interaction
into the system. Future systems will likely contain a combination of bus-based and
dataflow approaches.

6 Discussion.

As part of this workshop a series of questions were posed to the authors from other
participants. In the spirit of the workshop we will devote our conclusion to a discus-
sion of the points they raised.

• Q1: Anne Trefethen. You mentioned MATLAB as one of the classic PSEs. Have
you looked at MATLAB Simulink, SimBiology, or SimEvents, which seem to
have the same kind of graphical interface? Have they solved any of the issues
you raise?
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Yes. These tools all use a graphical interface similar to the ones we have discussed
here. There are many more examples. This model of programming is certainly not
new. Many domain specific composition tools are able to reduce the complexity of
the problem by simplifying the semantic space. SImBiology is an excellent example.
However, most of these systems are not designed to operate in the wide area as
web service workflow engines. However MATLAB does have support for Web ser-
vice integration, so it is possible to integrate web services into a MATLAB-based
application framework.

• Q2: Tom Jackson. How do you deal with the problem of integrating legacy user
code into portals (which are typically non-Java), particularly for visualization?

As discussed in Section 4 of this paper, legacy application integration is accomplished
by wrapping the application as a web service. This is a semi-automatic process. In
the case of visualization, it is possible to wrap an off-line rendering system as a
web service and we have done that. A more complex problem is to invoke a “live”
desktop application as part of a workflow. This is a general problem many systems
have with inserting a human action into the workflow. The best solution is to combine
the dataflow model with the event-bus model described above.

• Q3: Gabrielle Allen. How do you deal with resource allocation and/or resource
scheduling in these scenarios?

As mentioned in section 5, resource allocation and scheduling is handled by a “call-
out” to a resource allocation service from the workflow configuration service. This
use of late binding of the resources with the workflow script allows for very great
flexibility. If the workflow engine is also able to catch exceptions and listen to the
event notification bus, it is possible to change the resource allocation while the
workflow execution is continuing.

• Q4: Tom Jackson. Where you referring to Enterprise Service Bus architectures
when you discussed message bus solutions?

Yes. Although Enterprise Service Bus is often associated with a specific technology
such as an EJB/JMS solution. However the concept is identical.

• Q5: Gabrielle Allen. What is the difference between event-driven and data-driven
architectures, and can you integrate these with a centralized component which
allows decision making and control to only need to be implemented in one place?

A workflow or computation can be data-driven and implemented with an event-
driven bus framework or with a dataflow framework. There is a big difference be-
tween dataflow (as described here) and an event-driven bus. In the case of dataflow
the workflow designer implements control based on a graph of dependencies that
must be satisfied. Messages from one service are explicitly routed to the graphically
connected services. In the even-driven bus case each service can hear all messages
and respond to any of them. We control chaos by selecting services that only respond
to messages that are of the appropriate topic.

• Q6: Bill Gropp. Have formal methods for verifying correctness been applied to
graphical workflows?

Yes and No. There is ample work in the theoretical literature about the semantics
and correctness of these graphical models, but we know of no system in use that
implements any of these idea in practice.

Grid-Based Problem Solving Environments            13



• Q7. Richard Hanson. Libraries of software routines are well established as a
programming model and tool. What do you visualize as an execution model for
grid computing and workflows?

In many ways, what we have described here is a way to deploy application software
libraries in a distributed context. But there is an important and subtle difference be-
tween software components and traditional software libraries. Most software libraries
are not well encapsulated: they rely on the runtime environment of the program in-
voking them and they often operate by side-effecting common data structures. The
behavior of component systems is completely defined by the interfaces they present
to their clients.

• Q8: (Mo Mu) What do you think is the role of APIs in the composition of
workflows as a mechanism/standards to ensure the proper fitting of compo-
nents/services?

In a Web service oriented system, interfaces are defined by the Web Service Defini-
tion Language. This provides a programming language neutral way to describe the
messages sent to a service and the types of messages that are returned. Also, Web
service systems have evolved considerably from the days of remote procedure calls.
The stand now is message oriented, where the message is an XML document de-
fined by an XML schema. The reply is defined similarly. By using WSDL and XML
schemas, the services become completely programming language neutral. Services
built from Java or C++ or .Net or Perl or Python can all interoperate. This was
not possible with programming language based APIs because they all have different
type systems.

• Q9 : (Keith Jackson) What role dows semantic information play in a component
architecture? What kinds of semantic information should a service expose?

Semantics are critical. Current service models do not provide enough semantics
about the content of messages and responses. As discussed above this is one of the
greatest challenges to making a truly interoperable system of service components.

• Q10: (Anne Trefethen) How do we get community agreement on the semantics?

This is perhaps the most important question. The first step is to get a community to
agree upon an ontology. This is starting to happen in many scientific domains. Once
there is a common ontology, one can start defining common scientific metadata.
Again this is happening in atmospheric science, oceanography, physics, geology, and
many more areas. But there is a long way to go. Once you have a common ontology
and common scientific metadata, then wrapping community codes to work as services
in general e-Science PSE frameworks is relatively easy.
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Q&A – Dennis Gannon 

Questioner: Anne Trefethen 
You mentioned MATLAB as one of the classic PSEs. Have you looked at 
MATLAB Simulink, SimBiology, or SimEvents, which seem to have the same 
kind of graphical interface?  Have they solved any of the issues you raise? 

Dennis Gannon: 
For our application domains, MATLAB is not a primary tool, but we do get 
requests to support it.  Part of the problem is MATLAB is not completely Grid 
friendly.  However, it does now support Web Services.  Hence it should be 
possible to integrate MATLAB based tools into  Grid workflows. 

Questioner: Tom Jackson 
How do you deal with the problem of integrating user code into portals (which 
are typically non-Java), particularly for visualization? 

Dennis Gannon:   
We have an application service factory that is capable of "wrapping" a 
command line application and turning it into a Web service.  This is described 
in the talk.  However, a big challenge is integrating legacy desktop tools.  In 
some cases it is possible to create a service which listens for an event of a 
specific type.  This service runs on the user's desktop.  When the service 
gets the event, it can fetch data and then launch the legacy application with 
the data.  This allows the tool to exist at the end points of the workflow.  The 
difficulty is putting the legacy desktop application in the critical loops of a 
workflow.  More work needs to be done in this area.  It is very important.

Questioner: Tom Jackson 
Were you referring to Enterprise Service Bus architectures when you 
discussed message bus solutions?

Dennis Gannon:   
ESB is one solution.  However, we prefer a Web services solution and find 
ws-notification and ws-eventing to be very powerful and general solutions to 
the message bus.

Questioner: Gabrielle Allen 
How do you deal with resource allocation and/or resource scheduling in 
these scenarios?

Dennis Gannon:   
Poorly.  However, we are working with the VGrADS project which is focused 
on scheduling and resource allocation.  In general, this is a service that the 



workflow engine and other services can invoke in advance of execution or 
on-the-fly.

Questioner: Gabrielle Allen 
What is the difference between event-driven and data-driven architectures, 
and can you integrate these with a centralized component which allows 
decision making and control to only need to be implemented in one place? 

Dennis Gannon:  
Event-driven is based on a bus organization where components subscribe to 
event by type, and publish other events back to the bus.  Data-driven are 
worklfows that behave like dataflow graphs.  Data arrives at the source 
components and the work propagates through the graph.  It can be pipelined.  
Purely event-driven workflows are harder to manage with a central control, 
while data-driven is manageable by a centralized workflow engine. 

Questioner: Bill Gropp 
Have formal methods for verifying correctness been applied to graphical 
workflows? 

Dennis Gannon:   
There is not much work that I know about on this for e-science workflows but 
there may be lots of work I am unaware of. One natural place to look is the 
work that has been done on circuit simulation. 

Questioner: Bill Gropp 
How do you handle relationships between elements or hierarchy in 
representation? 

Dennis Gannon:  
This is a big problem.  Many of the legacy applications have complex, 
interdependent input files.  Often a change in one input file to an upstream 
service may require a change to a downstream service.  The only want to 
handle this is to propagate change information downstream with the other 
data.  It is a hard problem in general. 



Why Performance Models Matter for Grid
Computing

Ken Kennedy1

Rice University ken@rice.edu

1 Introduction

Global heterogeneous computing, often referred to as “the Grid” [5, 6], is
a popular emerging computing model in which high performance computers
linked by high-speed networks are used to solve technical problems that cannot
be solved on any single machine. The vision for Grid computing is that these
interconnected computers form a global distributed problem-solving system,
much as the Internet has become a global information system. However, to
achieve this vision for a broad community of scientists and engineers, we will
need to build software tools that make the job of constructing Grid programs
easy. This is the principle goal of the Virtual Grid Application Development
Software (VGrADS) Project, an NSF-supported effort involving 11 princi-
pal investigators at 7 institutions: Rice, Houston, North Carolina, Tennessee,
UCSB, UCSD, and USC Information Sciences Institute.

The eventual goal, shared by most researchers working in the field, is for
Grid computing to be transparent. A user should be able to submit a job to
the Grid, with the understanding that the Grid software system would find
and schedule the appropriate resources and compile and run the job in such
a way that the time to completion would be minimized, subject to the user’s
budget. The current situation is far from that ideal. There exist some simple
and useful tools, such as Globus [4], which provides a mechanism for resource
discovery and handles distributed job submission, and Condor DAGMan [12],
which manages the execution of job workflow structured as a directed acyclic
graph (DAG) by scheduling each job step when all its predecessors have been
completed. However, the application developer must still do a lot of work by
hand. For example, he or she must manage the complexity of heterogeneous
resources, schedule computation and data movement (if something more so-
phisticated than DAGMan is desired), and manage fault tolerance and per-
formance adaptability.

To address these issues, the VGrADS Project is carrying out research on
software that separates application development from resource management



through an abstraction called a “virtual grid.” In addition it is exploring tools
to bridge the gap between conventional and Grid computation. These include
generic scheduling algorithms, resource management tools, mechanisms for
transparent distributed launch, simple programming models, mechanisms to
incorporate fault tolerance, and strategies for managing the exchange of com-
putation time on different platforms (sometimes called “grid economies”).

2 VGrADS Overview

The current research of the VGrADS Project is focused on two major themes:
virtualization of Grid resources and generic in-advance scheduling of applica-
tion workflows. In this section we describe these two themes in more detail.

2.1 Virtualization

The key motivation behind virtualization within the VGrADS software stack
is that, eventually, the Grid will consist of hundreds of thousands, or even mil-
lions, of heterogeneous computing resources interconnected with network links
of differing speeds. In addition, these resources may be configured through
software to provide a variety of specialized services. For an end user, or even
an application scheduler, the task of sorting through such a huge resource base
to find the best match to application needs will be nearly intractable. To sim-
plify this task, the VGrADS Virtual Grid Execution System (vgES) provides
an abstract interface called the Virtual Grid Definition Language (vgDL), that
permits the application to specify, in simple terms, what kinds of resources
are needed. Specifications in this language are quite high level. For example,
an application might say “give me a loose bag of 1000 processors, each with
at least one gigabyte of memory, and with the fastest possible processors” or
“give me a tight bag of as many AMD Opteron processors as possible.” Here
the distinction between a “loose bag” and “tight bag” is qualitative: a loose
bag has substantively lower interconnection bandwidth than a tight bag. The
user can also specify a “cluster” of processors, which means that all processors
have to be in the same physical machine, interconnected at extremely high
bandwidths.

In response to a query of this sort, the vgES does a fast search of a database
of global resources and produces one or more configurations, or virtual grids,
that best match the specification. This search can be thought of as a first
step in a two-step resource allocation and scheduling procedure. The second
step applies a more complex scheduling algorithm, as described in the next
section, to the returned virtual grid. VGrADS experiments have shown that
this approach produces application schedules that are nearly as good those
produced by complex global algorithms, at a tiny fraction of the scheduling
cost [7, 15].
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In addition to resource screening, the vgES provides many other services,
including job launch and support for fault tolerance, but this paper will not
further discuss these facilities.

2.2 Scheduling

Most Grid problems are formulated as workflows, directed acyclic graphs
(DAGs) in which the vertices represent job steps and the edges represent data
transfers (or dependencies). As described in Section 1, Condor DAGMan and
other Grid scheduling mechanisms map a particular step onto available re-
sources only when all of its input data sets are ready. In contrast, in-advance,
or off-line, scheduling looks at the entire workflow before the job begins to
ensure that each step is assigned to a resource that is able to execute it ef-
ficiently, while keeping the data transfer times between steps to a minimum.
This approach has many advantages over demand scheduling. First, it should
do a better job of matching resources to computations by exploring the space
of possible assignments in advance, rather than just using whatever is available
when a step is ready to execute. Second, it streamlines the data movement
process and reduces delays between computations because, at the end of each
step, we already know where the data needs to be sent and no inter-step
scheduling is necessary. Finally, as we will see in Section 4.2, it makes it pos-
sible to incorporate estimated batch queue waiting times into the schedule
as extra delays between job steps. Our experiments have shown that off-line
scheduling can produce dramatically better workflow completion times, in
many cases by factors greater than 2, than dynamic approaches [2, 9].

On the other hand, there is a major impediment to the use of any off-line
scheduling algorithm: to do a good job, it must have accurate performance
models for each job step in the workflow. A performance model is needed
estimate the time for a step to complete as a function of the size of the input
data sets and the nature of the computing platform on which it is executed.
In an off-line scheduler, performance models serve as surrogates for the actual
execution times of different job steps. Dynamic scheduling schemes do not
need such models because steps are scheduled only when all predecessor steps
have completed. Thus, the actual execution time of a step is its performance
model.

The need for performance models is a real problem because accurate mod-
els are notoriously difficult to construct. Furthermore, our experiments demon-
strate that inaccurate performance models lead to bad schedules [9]. The goal
of the VGrADS Project is to make Grid programming easier rather than
more difficult, so requiring that the developer construct performance models
by hand is out of the question. To address this issue, VGrADS researchers are
exploring new methods for automatic construction of accurate performance
models. This work, which produces remarkably accurate models for unipro-
cessor performance will be discussed in Section 3.
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Since the scheduling problem for DAGs is NP-complete, VGrADS uses
heuristics to schedule workflows onto virtual grids. Each of the heuristics
employs an affinity matrix that is constructed by using performance models to
estimate how efficiently each job step will run on each resource. Data transfer
times between resources are estimated as data volumes divided by average
bandwidths from the Network Weather Service [14]. From these inputs, the
actual mapping can be computed using one of two different kinds of heuristic
scheduling algorithms. A level-based scheduler operates by moving from the
start of a workflow forward, considering at each stage all the computation
steps that are ready to execute after the previous echelon of compute steps
finishes. At a given stage, the scheduler maps each job step to the best available
resource, where “best” is determined by a heuristic measure. For example, it
might pick the resources that minimize the maximum completion time of
steps in the echelon, the so-called min-max strategy. Currently, the standard
VGrADS strategy is level-based, but it uses three different heuristic measures
and picks the shortest of the three resulting schedules [9].

The alternative critical path scheduling strategy is similar to list schedul-
ing: it picks the next step to be scheduled by some heuristic measure based
on time from the start of the workflow or time to completion of the workflow.
This has the advantage of starting workflow steps when they are ready, in-
stead of waiting until all steps in the previous echelon have completed. Our
experiments show that critical path heuristics are usually better than level-
based approaches and we plan to switch the standard scheduler to use one of
these in the near future.

Because VGrADS scheduling algorithms are applied to the virtual grids
returned by the vgES, which are limited to sizes approximating what the
user needs rather than the space of total resources, the scheduling times are
reasonable, even for complex scheduling heuristics, such as the ones described
above, that are quadratic or worse in the number of resources.

3 Construction of Performance Models

Given that most of the applications of interest to the VGrADS project con-
sist of workflows in which each computational step is executed on a single
processor, our research on construction of performance models has focused on
accurate, and non-intrusive ways, to model performance on modern commod-
ity processors.

The base strategy of the VGrADS-supported performance model con-
struction research, due to John Mellor-Crummey and his student Gabriel
Marin [10], uses instrumentation of application binaries to determine the
memory hierarchy behavior of each data reference in a program. Based on
trial runs with a few data sets, the approach constructs, for each static mem-
ory reference in a program, a histogram of the number of different cache lines
touched since the last touch of the referenced cache line: this quantity is often
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Fig. 1. (a) Reuse distance data collected for one reference in the application
Sweep3D; (b) Final model for the data in (a); (c) Model evaluation at problem
size 70 on a logarithmic y axis, and predictions for a 2048-block level 1 cache and
24576-block level 2 cache. (Figure reprinted with permission from a paper by Marin
and Mellor-Crummey [11].)
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called reuse distance. The reuse distance histogram, depicted in Figure 1(a),
is parameterized by the size of the input data set and the percentage of the
time that the reuse distance achieves this value. For most array references,
the reuse distance will be a small constant most of the time, but it may be
linear in the data set size in some cases and occasionally non-linear in data
set size. This is because a static reference that touches to the next element in
an array column (constant reuse distance) most of the time can also refer to
the first element in a column (linear reuse distance) or even the first element
referenced in the array (non-linear reuse distance).

From the data histogram for each reference, a model is constructed by
fitting curves to the different regions of the histogram (constant distance,
linear distance, quadratic distance, etc.), as depicted in Figure 1(b). From
these models, which are machine-independent, we can compute the memory
hierarchy delays for a given cache size and data set size by examining where the
plane for a given cache size intersects the model (see Figure 1(c)), determining
the number of misses above the plane, and multiplying by the miss penalty
for that level of cache. This must be done for each reference and each level
in the memory hierarchy. The result is the aggregate miss penalty for a given
memory hierarchy.

The remainder of the execution costs can be estimated by carrying out a
speculative scheduling exercise for the loops in the program with the specific
machine’s delays. Here we can assume that all data is found in cache, because
miss penalties are accounted for in the memory-hierarchy analysis.

This strategy has proved extremely accurate in practice and has been
used in VGrADS to estimate the performance of individual computations in
the EMAN application [8].

In the future, we hope to extend this methodology to more complex compu-
tations that can be carried out on tightly-coupled multiprocessors. Of course
there are a number of other approaches to performance estimation and mod-
eling available in the literature and individual applications may come with
such models already built in.

4 Value of Performance Models

In addition to being an integral part of the VGrADS scheduling methodology,
performance models have many other important roles to play in the Grid. In
this section we review several applications that are the focus of new work in
VGrADS.

4.1 Grid Economy and Global Resource Utilization

It is fair to say that we will not be able to deploy a truly global Grid until we
can establish exchange agreements and exchange rates among different types
of computing resources. Success will depend on maintaining floating exchange
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rates that permit machine cycles on one platform to be exchanged for cycles on
another. These rates could be established by estimate, then adjusted through
experience: As different applications are run on different resources, we could
collect data on relative performance and adjust the exchange rate accordingly.
I will not elaborate further on how such a process might work, because that
is the subject of substantive ongoing research. However, suffice it to say that
the exchange rates at any given moment accurately reflect the recent average
relative performance of a wide variety of applications.

Because an established exchange rate represents average relative perfor-
mance over many applications, accurate performance models can be used to
procure the most cost-effective computation for a particular application. For
example, suppose that the exchange rate indicates that, over all applications,
processor X is worth about twice as much as processor Y at the same clock
frequency. However, the performance models for application A indicates that
A will run three times as fast on X as on Y . In that case, it is always more
economical to run A on processor X . To put it another way, if A is perfectly
partitionable, it will need three times as many of processor Y to get the same
work done in the same time. Thus, if A can be done in an hour with n of
processor X , but only n − k are available, it will need 3k of processor Y if
it is still to finish in an hour. Given that the total cost is (n − k)rX + 3krY ,
where rX is the cost in dollars per hour of time on processor X , rY is the cost
per hour of processor Y and rX = 2rY , the total cost for a run with n − k of
processor X and k of processor Y is:

2(n − k)rY + 3krY = (2n + k)rY (1)

Since this increases linearly with k, it is always best to use as few of processor
Y as possible.

The important observation is this: If every application has its own perfor-
mance model, it can use this model to select the most cost effective resources
for its execution. If all applications do this and the exchange rate is set to
correctly reflect the mix of applications, this strategy will have the beneficial
effect of optimizing the utilization of global Grid resources. Of course, for
this to happen, the exchange rate will need to be continually adjusted as the
application mix evolves.

4.2 Scheduling around Batch Queues

If the Grid is to be truly universal, it will need to incorporate machines, like
those in the NSF TeraGrid, that are scheduled via batch queues. This presents
a new problem for global application schedulers: how to predict and account
for delays that are incurred waiting in batch queues. The VGrADS project
has developed a capability to predict batch queue wait times by using statis-
tical methods applied to queue histories [3]. This has been used to schedule
Grid workflows by adding wait times to data transfer times in the scheduling
algorithm [13].
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The problem with the VGrADS approach described above is that the time
spent waiting in batch queues is essentially wasted. If the batch queue systems
supported resource reservations, in which a time slot could be reserved in ad-
vance, then the scheduler might be able to predict when these slots would be
needed and reserve them at scheduling time, thus eliminating batch queue de-
lays. In the absence of explicit reservations, such a facility might be simulated
by using estimates of batch queue waiting times to put jobs in the queue far
enough in advance to reach the front of the queue by the time the data for a
given job step arrives. In its most recent research, the VGrADS project has
been experimenting with both of these approaches.

The use of resource reservations for specific time slots presents another
problem, namely how to determine the required slot reservation times. If a
slot is allocated before the input data for the associated job step arrives, costly
resources will be wasted. On the other hand, if the data arrives before the slot
is available, completion of the workflow will be delayed. In order to accurately
estimate when a slot is needed for a particular job step without knowing which
resources will be assigned to the workflow by the vgES, the scheduler must
have some way to normalize the time used every step in the workflow.

To address this problem, VGrADS is introducing vgDL queries that sup-
port equivalences between different resource types. A query with equivalence
might take the form: “Give me the equivalent of 1000 processors of type X
using a mixture of X and Y , where X = 3Y for this application step.” Such
a request allows us to normalize the time for a particular job step by asking
for enough processors of each available type so that the step can finish in
a predetermined time. Using these equivalences should dramatically reduce
the variance in the scheduled time for any given job step and hence increase
the reliability of a request for a specific time slot, independent of the type of
machine on which that time slot and others before it are allocated.

Of course, accurate performance models are what makes it possible to
generate accurate equivalences of the sort described above.

4.3 Scheduling to a Deadline

In a recent collaboration with the Linked Environmental and Atmospheric Dis-
covery (LEAD) Project, the VGrADS team has been exploring how to schedule
application workflows to a deadline. LEAD performs mesoscale weather anal-
ysis and prediction, needed to track tornados and hurricanes, using inputs
from adjustable Doppler radars. The LEAD workflow is executed repetitively
and, after each workflow iteration, which involves both data integration and
simulation, the outputs are used to adjust the orientation of the Doppler
radars prior to running another iteration. Thus the deadlines are essential to
maintaining the accuracy of storm tracking.

Deadlines present another issue for scheduling: How many resources of
what size do we need to meet the deadline with a high degree of confidence?
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Performance models can help answer this question through a process of iter-
ative scheduling. The idea is to perform a first scheduling pass by requesting
an initial set of resources and scheduling onto these resources. If the schedule
completes before the deadline, we are done. If not, we can use a strategy called
automatic differentiation [1], to compute sensitivities of the performance mod-
els for the computationally intensive steps to resource sizes. We can then use
these derivatives to predict the resource set sizes needed to reduce the work-
flow running time by enough to meet the deadline.

In some cases, it may not be possible to meet the deadline, no matter how
many resources are used. For LEAD, an alternative is to reduce the computa-
tion done in some of the steps, as a less accurate computation performed on
time may still be adequate to reorient the radars accurately enough for the
next cycle. Performance models are useful in this case as well, because they
can help determine when the deadline is effectively unreachable.

If performance models have the capability of generating estimated vari-
ance in addition to estimated running time, the scheduler can increase the
robustness of the schedule by putting more resources along the critical and
near-critical paths of high aggregate variance, thus increasing the likelihood
of meeting the deadline, though at a somewhat higher cost.

5 Summary and Conclusions

The Virtual Grid Application Development (VGrADS) Project has adopted a
strategy for generic, off-line scheduling of application workflows that mandates
the use of accurate performance models. Although performance models can
be constructed by hand, this is a labor-intensive and error-prone process.
Therefore, VGrADS is exploring methodologies for automatically constructing
such performance models from trial runs and inspection of the application
itself, typically through binary analysis.

Once good performance models are available, they can be used for a variety
of other problems, including scheduling around batch queues and scheduling
to deadlines. In addition, accurate application performance models can be
used to increase the efficiency with which collections of applications use global
Grid resources by mapping computations to the most cost-effective computing
platforms within the Grid economy.

In summary, the construction and use of application performance models
can help make the global Grid into an efficient system for general problem
solving, because they allow for the accurate accounting of costs across diverse
computing engines.
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Q&A – Ken Kennedy 

Questioner: David Walker 
How can you apply performance models when the grid resources are shared 
with other users? 

Ken Kennedy:   
Much of the VGrADS research was done assuming that individual compute 
nodes in the Grid would be devoted to a single process.  However, for many 
resource environments, this is unrealistic.  In VGrADs, we hypothesized, and 
verified experimentally, that if a compute node is partially loaded to a fraction 
of x, the running time predicted by the performance model must be scaled by 
a factor of 1/x.  If the load varies dramatically, of course, this simple 
correction will be inaccurate, which is one of the difficulties of optimizing in a 
highly dynamic environment. 

Questioner: Gabrielle Allen 
How could this system change to support applications which are hard to 
profile a priori, for example, applications modeling chaotic and nonlinear 
phenomena, or complex application systems able to dynamically invoke new 
libraries, etc? 

Ken Kennedy:  
It is true that, for some applications, performance will be difficult to predict a 
priori. (However, irregular scientific applications do yield reasonable 
predictions in our system.) Our GridSAT application has this characteristic. 
For workflows in which such an application is a step, we may want to employ 
a hybrid dynamic/ static scheduling strategy.  This illustrates that there *are* 
situations in which the advantages of dynamic scheduling win out. 

Questioner: Suman Nadella 
How does VGrAds' "offline scheduling to meet deadlines" compare or 
contrast with priority scheduling such as the SPRUCE system in case of 
applications such as LEAD? 

Ken Kennedy: 
Although I was not familiar with SPRUCE until this meeting, I discussed it 
with the questioner after the meeting.  From that discussion, I believe that the 
strategies are complementary.  We have been working under the assumption 
that, in many cases, the applications we would be scheduling (including 
LEAD) would not, except in special cases, be able to command very high 
priorities. However, such a capability would be very useful in emergency 
situations.  It could also be used to provide more reliable resource 
reservations within the VGrADS scheme. 



Questioner: Xiaoge Wang 
How do you model the network data transfer rate? Is it more complicated 
than memory hierarchy? 

Ken Kennedy: 
Right now, we are using a very rough model.  We use services like  Network 
Weather Service to estimate the instantaneous bandwidth  between 
resources involved in a data transfer and divide bandwidth  into data volume 
(adding latency) to estimate data transfer time.  Of course, when loads vary 
dramatically, this can lead to inaccuracy. So far these have not been very 
troublesome. 

Questioner: Xiaoge Wang 
What if the resource provider could commit the resources and support the 
resource reservations?  Will the performance prediction be more realistic and 
accurate?

Ken Kennedy: 
Eventually, I think all providers will support resource reservations on a priority 
system.  It may be the case that a request for reservations will fail, in which 
case our scheduling system will need to look elsewhere.  With resource 
reservations, the scheduling should be more reliably accurate. 

Questioner: Bill Applebe 
In a grid economy, a lot of incentives can be given to reward accurate 
manual estimation of resources (e.g., do not schedule jobs without resource 
(time) estimate, or otherwise punish bad estimates). How can manual and 
automatic estimates be combined? 

Ken Kennedy: 
I believe that automatic estimates can replace manual estimates, but for the 
purpose of Bill's question, we may want to use very conservative estimates, 
as described in the next section.  In other words, the estimates should be at 
the 95th percentile, or above, of assurance if you could be kicked off 
because of going over time. 

Questioner: Bill Gropp 
Should distributions or intervals be used instead of single numbers in the 
performance estimates, particularly given the uncertainties in the 
performance of applications and resources? 

Ken Kennedy: 
Absolutely.  In fact you may wish to use different functions of the 
performance estimation distributions in different situations. For example, to 
minimize expected run time, you should use expectation.  However, to 



ensure meeting a deadline, you may wish to use the 80th, 90th, or 95th 
percentile, based on an analysis of the criticality of meeting the deadline. 

An interesting problem is that the estimates annotate nodes and edges of the 
workflow DAG.  This raises the interesting question about how to compute 
the distribution of the makespan, given the distributions on the nodes and 
edges.  As it happens, in a study I was involved with in the 1970s, it may be 
necessary to use empirical methods to approximate the aggregate 
distributions. 

Questioner: Boyanna Norris 
How extensible is the HPC Toolkit, i.e., can third-party tools operate on the 
architecture-independent performance models before they are mapped to a 
particular architecture by the scheduler? 

Ken Kennedy:  
This is a research project, so it may lack the robustness of a commercial 
system.  However, the code is distributed with an open-source license, and 
the architecture-neutral description is encapsulated in a way that would 
permit it to be operated on. 
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Abstract. Comprehensive, end-to-end, data and workflow management 
solutions are needed to handle the increasing complexity of processes and data 
volumes associated with modern distributed scientific problem solving, such 
as ultra-scale simulations and high-throughput experiments. The key to the 
solution is an integrated network-based framework that is functional, 
dependable, fault-tolerant, and supports data and process provenance. Such a 
framework needs to make development and use of application workflows 
dramatically easier so that scientists’ efforts can shift away from data 
management and utility software development to scientific research and 
discovery. An integrated view of these activities is provided by the notion of 
scientific workflows - a series of structured activities and computations that 
arise in scientific problem-solving. An information technology framework that 
supports scientific workflows is the Ptolemy II based environment called 
Kepler. This paper discusses the issues associated with practical automation of 
scientific processes and workflows and illustrates this with workflows 
developed using the Kepler framework and tools. 



1 Introduction 

Scientific research is exploratory in nature. Scientists carry out experiments, often in 
a trial and error manner, and they modify the steps of the tasks performed as 
exploration proceeds. As technology advances, more and more scientists are relying 
on computing systems to aide them in this process. In fact, some of the heaviest users 
of computing are in the sciences, and often it is no longer possible for scientists to 
carry out their day-to-day activities without heavy use of computing. This holds in 
the fields and problem areas as diverse as computational medicine, biology, 
chemistry, genetics, environment, fusion and combustion.  

Fig. 1. Illustration of an astrophysics simulation workflow. Computations are done at a remote 
supercomputer, and the resulting data sets are transferred to NC State University via a high-
speed internet link. This is followed by local “slicing and dicing” of the data, and their 
analysis and visualization.  

We use the term scientific workflow to describe a series of structured activities 
and computations (we call them workflow components or actors1) that arise in 
scientific research and problem-solving process [11]. A scientist may divide the 
overall task into smaller sub-tasks, each of which can be considered to be an 
individual step in an experiment or a simulation. At each step, the results can be 

1 The term “actor” is the one used in the Kepler [2] workflow support system based on 
Ptolemy II framework [12] to describe process components interconnected by data flows 
and orchestrated by a “director” or a workflow control process. In general, a process 
oriented network can be described using generalized activity networks [13]. Activity 
oriented networks have nodes interconnected by data flows and their graph-based 
depictions are sometimes called actigrams, while data-oriented networks have data nodes 
interconnected by data transforming activity links and their graph-based depictions are 
sometimes called datagrams (not to be confused with internet protocol datagrams). 
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generated, managed, analyzed, stored, or otherwise processed, and then used as an 
input to the next step in the process. Such reuse of data can be done repeatedly until 
the overall task is completed to scientist’s satisfaction. We use the term “workflow” 
to describe the chaining of smaller tasks to achieve the desired results using data 
from different source in combination with different transformation, analysis and 
visualization services, [1, 11]. Today, many – often all – of the steps involve support 
from or interaction with information technology. Scientific workflow includes 
actions performed (by actors), decisions made (control-flow), information transferred 
(data-flow), exception and interrupt handling (e.g., event-flows) and the underlying 
coordination and scheduling required to execute a workflow (orchestration). In its 
simplest case, a workflow is a linear sequence of tasks, each one implemented by an 
actor.

An example of a workflow is: a) transfer of executable simulation application 
code and computational and storage configuration information to a cluster or a high-
performance computer, b) running of  this application, and c) transferring of the 
results to a remote machines for further analysis and visualization. Figure 1 
illustrates such a workflow.  

Comprehensive end-to-end data and workflow management solutions are needed 
to handle the increasing complexity of processes and data volumes associated with 
modern distributed scientific problem solving, such as ultra-scale simulations and 
high-throughput experiments. The key to the solution is an integrated network-based 
framework that is functional, dependable, fault-tolerant, and supports data and 
process provenance. Such a framework needs to make application workflows 
dramatically easier to develop and use [36] so that scientists’ efforts can shift away 
from data management and application development to scientific research and 
discovery. A Ptolemy II based environment called Kepler [2] is one such framework.  

This paper discusses the issues associated with practical automation of scientific 
processes and workflows and illustrates this through workflows developed using the 
Kepler framework and tools. 

2 Workflows 

Workflow technologies have a long history in the databases and information systems 
communities [1]. Scientific community has developed a number of problem-solving 
environments, most of them as integrated solutions [24 and references there in]. 
However, more recently component-based solution support systems have become 
more popular [e.g., 14, 25, 26, 29, 30]. Scientific workflows merge advances in all 
these areas to automate support for sophisticated scientific information technology 
assisted exploration and problem-solving [e.g., 2 – 11, 46, 55, 61].   
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4 Vouk et al. 

Fig. 2. From a “napkin drawing” to an executable Kepler-based workflow. 

Scientific workflows, as we understand them, are crucial to the success of major 
initiatives in high-performance computing. As parallel computing expands, their 
standards encourage scientists to construct complex distributed solutions that span 
the networks, and through web-based interfaces and virtualization invite 
incorporation into still more complex systems that may include interactions with 
economic and business flows. Workflows provide the necessary abstractions that 
enable effective usage of computational resources, and development of robust 
problem-solving environments that marshal high-performance computing resources. 

Workflows have many synergies with web and network-based services. In fact, 
(web) service based workflows are quickly becoming a requirement of a wide range 
of new service-oriented applications. Many domain experts, particularly in life 
sciences, do not wish to construct workflows by coding them beyond what is 
necessary to do research in their domain, e.g., to develop appropriate algorithms. 
They would like to considerably reduce the overhead currently required by some 
information technology solutions. That overhead can be as much a 50% of the 
activity. Therefore, workflow automation and higher-level specification fits naturally 
into the trends towards increased domain specialization as application developers 
move to become (web) services providers, and computer scientists seek reusable 
libraries and tools, rather than custom made applications. 

Of course, workflows such as the one shown in Figure 1 have much more depth 
and structure than shown in the Figure 1 diagram. Often they can be naturally 
mapped onto graph representations, e.g., [13, 30]. Typically, a scientist would like to 
go from a conceptual “napkin drawing” of a workflow to an executable version of it 
with as little overhead from the information technology tools and solutions as 
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possible (Figure 2). Sometimes the best way to manage complexity of such structures 
is to nest the graphs (e.g., Figure 3). A graph can then be translated into executable 
form either manually or automatically. However, the process can be a reverse one – 
the code and some process scripts for an, in part, manually assisted workflow already 
exists, and the workflow technology is used to integrate these elements. In either 
case, it is beneficial to keep a high level graph representation of a workflow so that 
end-users can better understand and modify application logic.  

Fig. 3. Nesting can help manage complexity of  workflows. 

Scientific workflows can exhibit and exploit data-, task-, and pipeline-
parallelism. In science and engineering workflow processes, tasks and computations 
are often large-scale, complex, and structured with intricate dependencies [7, 13, 14]. 
Information technology assisted scientific workflows have several common 
characteristics:   

Composition. Scientific workflows require invocation, interconnection and 
integration of multiple data collection, simulation, application or analysis
elements, i.e., methods, approaches, tools and processes. While these 
elements are often invoked in a routine manner, there may also be changes 
in the workflow as scientists interactively explore new options. Developing 
an executable workflow requires resolving mismatches between what an 
element expects and what the previous step in the process generated. 
Diversity. Scientific workflows require significant heterogeneous,
computational, storage and networking resources. Many large-scale 

An Astrophysics Workflow (using Kepler framework)
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scientific workflows will execute for hours, often days, perhaps weeks and 
months, and may require user intervention at multiple times. If the 
workflow, or one of the associated computations or activities runs into 
trouble, fault-tolerant behavior, e.g., via human intervention or perhaps 
automated failover or recovery techniques must be attempted because 
returning to the initial starting point is usually not acceptable.   
Verification and validation of processes as well as intermediate and final 
results is essential in the domain of scientific problem solving. This ensures 
integrity of the data, processes and results, that the activity as a whole 
remains on track, and that resources are not wasted. Often real-time or near-
real-time status tracking and preservation of state capabilities are required. 
One of the most difficult (and currently not yet fully solved) issues is 
semantic validity of workflows. Semantic mismatches between workflow 
components, tools and data must be handled in order to maintain confidence 
in the results. For example, some of the tools may be designed for 
performing simulations under different circumstances or assumptions, and 
this must be accommodated to prevent spurious results.  
Evolution. Because of their evolutionary and exploratory nature, frequent
changes are often an integral part of a scientific workflow lifecycle. 
Therefore, is critical to record provenance information (e.g., the lineage of 
data and processes) in a way that is consistent, persistent, and easily 
retrievable and auditable. Related to this is the ability to steer the 
workflows and the associated computational tasks through use of run-time 
dashboards, analytics and process feedback loops. 

3 Overhead 

In the 21st century, a key differentiating characteristic of a successful information 
technology (IT) is its ability to become true and valuable contributor to 
cyberinfrastructure. Cyberinfrastructure [36] makes IT systems, applications and 
services dramatically easier to develop, deploy and use. This expands the scope of 
applications and services possible within budget and organizational constraints. It 
also increases efficiency, quality, and reliability by capturing commonalities and by 
facilitating efficient sharing of resources and services. Ultimately, 
cyberinfrastructure shifts the effort away from IT (overhead) concentrating it on the 
basic end-user mission and business. 

Appropriate cyberinfrastructure is especially important for any business that in 
large part relies on IT to conduct its daily operations. Today, this is true of many 
financial, educational, research, government and retail organizations. From the 
perspective of an end-user IT must be enabling and appliance-like. End-users should 
be able to use the technology to improve their productivity and reduce technology-
driven overhead, e.g., software installation or management. For example, unless IT is 
the primary business of an organization or an individual, less than 20% of its effort 
not directly connected to its primary business should have to do with IT issues, even 
though 80% of its business may be conducted using electronic means. In general, 
infrastructure installation and maintenance overhead must have the property of the 
economy-of-scale at all levels – hardware, software, provisioning, maintenance, etc. 
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A powerful cyberinfrastructure enabling concept is utility-computing through 
service-oriented architectures (SOA) [e.g., 50]. An SOA is an environment where 
end-users can request an IT service at the desired functional, quality and capacity 
level, and receive it either at the time requested or at a specified later time. A key 
enabler of SOA is component-based construction of services. Another key 
supporting technology is virtualization of IT resources and services.  It is expected 
that in the next 10 years, service-based solutions will be a major vehicle for delivery 
of information and other IT assisted functions at both individual and organizational 
levels, e.g., software applications, web-based services, even personal and business 
“desktop” computing. 

Fig. 4. A typical scientist is primarily interested in preparation of inputs and codes (green 
areas) related to his/her specific research domain and in doing “science,” i.e., discovery. There 
is much less interest in tending computers, moving data or developing peripheral IT 
applications (orange areas). 

Scientific computing is no different in this respect. Today a scientist involved 
with a large-scale scientific workflow, e.g., of the peta-scale class of problems, may 
spend a lot of time dealing with IT related activities they need, but often wish they 
did not have to do [37]. For example, a typical class of heavy-duty scientific 
simulation workflows may have abstraction steps shown in Figure 4. A typical 
scientist’s primary interest is in preparation of inputs and codes related to her or his 
specific research domain and in doing domain specific scientific discovery. Unless 
IT is the research or development passion of the scientist, there is much less interest 
in tending computers, moving data or developing peripheral IT applications and 
support tools (e.g., visualization frameworks). Yet, as much as 50%, sometimes even 
more, of a scientist’s time may be taken up by IT tasks that can be, but are not, 
automated and/or easy to use. Obviously, there is a need to improve on this. In fact, 
this has prompted a number of entities (including the US Department of Energy) to 
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sponsor research and development projects2 aimed at making scientists more 
productive. 

4 Component-based Construction 

Component-based construction of solutions, of course, is not a new concept. It has 
been one of the “holy grails” of software engineering since its earliest days. Results 
have been mixed so far. However, the advent of reliable and readily available 
networked resources, and especially of service-oriented architecting, makes truly 
component-based construction of large scale distributed software-based solutions 
viable reality.  

Fig. 5. Workflow abstraction. 

Consider the Figure 4 abstraction in a somewhat different light (Figure 5). The 
flow starts with preparation of the domain-specific codes and inputs. In 
computationally very intense workflows, these preparatory activities may happen in 
environments that are different from the one where the code will actually execute. 
This is followed by moving of the data and codes to host (or grid) that will execute 
the simulation (e.g., a high-end supercomputer). Once the execution is scheduled (a 
request may wait in a queue for resources), the scientist may wish to monitor its run-
time progress, handle run-time diagnostics, perhaps steer the computations, and 
certainly collect outputs and results. Outputs of large-scale computations may not 
remain where they are generated, but may move to a post-run data manipulation and 

2 For example, SciDAC (http://www.scidac.gov/)
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analysis environment for slicing, dicing, analytics, visualization, and so on A lot of 
information, perhaps all, is archived in a permanent way. Furthermore, all through 
the process there is generation of meta-data (data about data and processes) that is 
either used directly (perhaps in “dashboards”) or is part of the data and process 
lineage (provenance) information [57].  

Implementation of workflow abstractions requires availability of a relevant set of 
IT-based operations in the form of either software applications or perhaps as 
commands built into operating systems used. In this context, it is very important to 
distinguish between a custom-made workflow solution (or a problem-solving 
environment), and a more canonical set of operations, methods, and solutions that 
can be composed into a scientific workflow. Former have been around for a long 
time [e.g., 24 and references therein], latter are emerging. For instance, sort, uniq, 
grep, ftp, ssh and so on, are typical unix operating system commands that scientists 
can rely on to be available for workflow construction. It is less certain that a complex 
tool like SAS (which can also sort data, but also does many other things) is available 
on all platforms of interest, or that some non-standard data moving utility application 
such as bbcp is readily available on all platforms of interest. Some, operations such 
as “slice and dice” or “visualize” data are usually available only in the form of 
specialized software packages or applications. 

On the other hand, expectations are rising. Scientific community now expects 
utility-like (appliance-like) on-demand access to needed IT resources where use of 
IT-based solutions is not bound to a fixed location (such as a specific lab) and fixed 
resources (e.g., a particular operating system), but has moved to a (mobile) personal 
access device of a scientist (e.g., laptop or a PDA or a cell phone) and service-based 
delivery.  Scientists would like to move away from the situation where they have to 
spend more time on IT development, support and workflow management (art) to a 
situation where IT support is a commodity and they can focus primarily on their 
basic scientific mission (Figure 6). They are looking for environment where 
application workflows are dramatically easier to develop and use. Yet, today a 
practical bottleneck is often still in the IT domain, i.e., in the scientific workflow 

environment of the end-
user scientists. 

The key to the 
solution, is an integrated 
scientific process support  
framework that is 
dependable, supports 
networked or distributed 
workflows, supports a 
range of couplings among 
its building blocks, 
provides fault-tolerant 
and data- and process-

aware service-based delivery, and provides the capability to audit processes, data and 
results.  Key characteristic of such a framework and its elements are [25, 26]: 
reusability (e.g., elements can be re-used in other workflows), substitutability
(alternative implementations are easy to insert, very precisely specified interfaces are 
available, run-time component replacement mechanisms exist, there is ability to 
verify and validate substitutions, etc), extensibility (ability to readily extend system 

Fig. 6. From art to commodity.
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component pool, increase capabilities of individual components, have an extensible 
architecture that can automatically discover new functionalities and resources, etc), 
and composability (easy construction of more complex functional solutions using 
basic components, reasoning about such compositions, etc.).  

Components are assembled according to the rules specified by a component 
model. Their coupling can range from tight to loose, from synchronous and 
blocking to asynchronous. Components are assembled using their interfaces.
Component composition assembles components to form a larger component, an 
application, or a workflow.  All parts must conform to the component model or they 
do not fit together. A component technology is a concrete implementation of a 
component model. 

Interoperability among components, or workflows built from components, is a 
major practical issue. Unless component technologies allow for interoperation 
among different technologies and component models (perhaps through standardized 
inter-workflow interfaces), there is a danger that workflows from different groups 
and communities (who invariably use different component technologies) will create 
“stove-pipes” that will hamper disciplinary and multidisciplinary project, data 
exchange and scientific discovery. Steps in that direction are standardization efforts 
related to workflow description languages, web-services and similar [e.g., 51, 52, 
53]. 

5 Complexity and Usability 

A major issue of concern with new technologies, and general purpose scientific 
workflow support environments are no exception in this context, is complexity and 
usability. End-to-end workflows involve three types of interactions human-to-
human, human-to-machine and vice versa, and machine-to-machine. Human-to-
human communications have a relatively slow information exchange rate and are 
tolerant of both semantic and syntactic errors. Machine-to-machine communications 
are at the other end of the spectrum. They can take place at very high rates but must 
use very exact and unambiguous protocols.  

Human-to-machine interactions are the most critical from the complexity and 
usability point of view. Humans need to construct the workflow at some point, and 
humans are the recipients of the information that emerges from those workflows. As 
already mentioned, scientific community expects utility-like (appliance-like) on-
demand access to needed IT resources and workflow technology and tools must meet 
cost, complexity, skill level to implement, usability, maintainability, reliability, 
availability, and other expectations of its users. If it fails to do so, i.e., the overhead 
brought on by the technology does not exceed the potential value added by its use, 
technology is typically not be used.  

This is illustrated in Figure 7. Some technologies never make the break-even point, 
some “arrive” at or past the break-even point. A good example of a technology that 
was widely accepted, because it made access to networked information much more 
acceptable for a general user, is the Web. Scientific workflow technologies are now 
approaching the break-even point through reduction in the complexity of workflow 
construction, increased operational reliability, and provision of a suite of support 
functionalities and packages scientists expect. One such environment is Kepler. 
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Fig. 7. The relationship between the value added by use of a technology and the overhead 
inflicted by complexity, reliability, usability and cost of the technology. 

6 Kepler 

Kepler [2] is an open source component-based scientific workflow support system 
based on the Ptolemy II framework [12]. Kepler is being developed through a large 
cross-project collaboration3. Basic components of the Kepler framework include: the 
Ptolemy II core, Kepler core extensions, Kepler object and repository manager, 
extensions for smart re-run and failure recovery, provenance support modules, a 
graphical user interface (GUI) layer based on the Ptolemy II Vergil GUI, an 
authentication layer, a library of generic, application and domain specific actors, and 
a repository for provenance information. While Kepler can operate without the GUI, 
it is a useful workflow construction and execution monitoring tool.  

Figure 8 illustrates a GUI-level view of a simple workflow. In this case the 
director is called “PN Director” where PN stands for Process Networks, and as it 
name implies it implements the process network model. Actor icons can be dragged 
and dropped from the actor repository (shown on the left in the Figure 8) and 
connected together with dataflow arcs. Inputs can be parameterized (and their values 
automatically displayed on the desktop) or can come from files, or be hidden within 
icons. For example, one would change or input parameters by double clicking on an 

3 SEEK: Science Environment for Ecological Knowledge, SDM Center/SPA: SDM 
Center/Scientific Process Automation, Ptolemy II: Heterogeneous Modeling and 
Design, GEON: Cyberinfrastructure for the Geosciences, ROADNet: Real-time 
Observatories, Applications, and Data Management Network, EOL: Encyclopedia of 
Life, Resurgence, CIPRes: CyberInfrastructure for Phylogenetic Research, and 
others. 
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icon. Once workflow execution has started it can be paused, resumed or stopped, and 
the flow of information through the workflow can be monitored in real-time. 
Documentation is an integral part of the system.  

Ptolemy II was originally developed to support modeling, simulation, and design 
of concurrent, real-time, embedded systems. Kepler project has extended this 
framework to provide access to and use of synchronous and asynchronous loosely 
and tightly coupled and networked resources and functionalities that are typically 
used in scientific workflows. From the end-user perspective, there are two principal 
groups of elements. One set are the computational models - represented by 
“directors”, and the other set are the data-flow connected processing nodes called 
“actors”.

Fig. 8. Kepler GUI. 

A director is an engine that controls the behavior and execution of the workflow 
components. In doing that, it implements different computational models, and thus it 
defines the semantics of the execution and of the interactions among the actors.  
While there are a number of open source and closed source scientific workflow 
support environments [e.g., 2, 3, 4, 42, 43, 55], a very unique and distinguishing 
feature of the Kepler framework is that  (through Ptolemy II) it enables a very rich 
mixture of models of computation. Examples of realized computational domains 
range from continuous-time modeling, to dynamic data flow, to discrete-event 
modeling, to finite state machines, to process networks, to synchronous dataflow 
modeling, to discrete time and distributed discrete events, and so on. 

Actors encapsulate parameterized actions and have interfaces define by ports and 
parameters. Ports are used to communicate input and output data and streams, but 
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without call-return semantics. Communication semantics among ports is handled by 
the directors – one per workflow level – which provide flow control. Workflows can 
be nested (e.g., Figure 2), and different computational models can be used at 
different hierarchical levels so long the communication channels and actions that 
may cross level boundaries are compatible.

Fig. 9. Part of the XML-based description of the workflow shown in Figure 8. 

Actors are typically collected in libraries, many of which are domain and data 
polymorphic.  A number of supporting packages and actors are provided either as 
part of Ptolemy or as part of Kepler additions. This includes graph-theoretic 
manipulations, matrix and vector math, signal processing, data typing, handling of 
generic web services, customizable relational data-based management, command 
line wrappers for ssh, scp, ftp and similar, a level of Grid support (e.g., GridFTP, 
certificate generator), native R and Matlab support, SRB – the SDSC storage 
resource broker, communication with object resource brokers, image processing, 
visualization, textual and graphical outputs, etc. A number of functionalities are 
being added or improved, including large-scale robust data movers, more extensive 
provenance support, semantic-intensive actors, management for data-intensive and 
compute-intensive workflows, authentication and authorization, distributed 
execution, execution monitoring, fault tolerance, and scientific data management 
application-driven extensions such as access to or integration with parallel NetCDF, 
PVFS, MPI-IO, parallel-R, FastBit, and CCA. 
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Kepler workflows are recorded and can be exchanged as XML-based Modeling 
Markup Language (MoML) files [38]. Figure 9 shows part of the MoML description 
of the workflow shown in Figure 8. Kepler has many other desirable features. For 
example, if running in a distributed environment, it operates as a relatively loosely 
coupled system, while operating on a single platform it can operate as a very tightly 
coupled system. In addition, Kepler allows, using additional middleware that 
manipulates MoML files, dynamic construction of workflows. Kepler environment is 
very external-application friendly. It can invoke and communicate with existing 
tightly coupled external problem solving, analysis or visualization environments 
(e.g., R, SciRUN [62], Ensight [63]), as well as Grid-based resources..  

Kepler is also very flexible in how far it extends into a workflow. It can contain 
the whole workflow and orchestrate it in a synchronous or asynchronous manner, or 
it can act only as a control layer, with separate provenance and “heavy lifting” 
computational, data movement and storage layers. The current implementation is 
primarily a single instance environment that virtualizes quite well. For example, NC 
State University Virtual Computing Laboratory [64] offers Kepler to its users as one 
of its images, and allows users to spawn multiple instances of Kepler workflows for 
simultaneous use by one or more end-users. 

7 Run-Time Monitoring and Provenance 

The need to provide run-time monitoring of scientific processes and collect 
provenance information has been recognized for some time now [e.g., 9, 10, 14, 39, 
40 – 45, 57]. Provenance is the history of data, execution and conditions applied to a 
workflow run. Run-time monitoring may be part of the provenance meta-data, but it 
also may require collection of additional information and display of that information 
in a user-friendly format, for example on a “dashboard,” so that run-time tracking, 
problem determination, computational steering, and other workflow-related feedback 
may take place. Such information may also be used to provide fault-tolerance related 
information (including check-point and recovery data and information), recreate of 
results and rebuilding of workflows, associate workflows with results it produced, 
create links between generated data in different runs, compare different runs, 
checkpoint a workflow and recover, debug and explain results.  In general this 
information can attest to the lineage of the data (data provenance, such as 
intermediate and end results, file names and paths, data-base references, URLs, etc.), 
processes (process provenance, such as software version numbers, the actual 
workflow graphs or descriptions, events that occurred during a run, input data and 
parameters used, etc.), error and exception management (error and execution logs), 
and given the right tools, workflow design provenance. 

Kepler currently implements an internal actor-based provenance mechanism [e.g., 
2, 41, 54], and several optional portal-based and domain-oriented external process 
tracking and monitoring mechanisms and dashboards. Under consideration is 
incorporation of the VisTrails [55] provenance infrastructure into the Kepler 
framework. VisTrails has extensive support for process and data provenance [57, 
58], including visual querying capabilities and multi-user support, which aids 
collaborative work. 
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8 Security 

Authentication, authorization, access control and security are a major issue with 
almost any network-based solution available today. The issues take many shapes and 
forms. Practically all workflow support environments, including Kepler, face these 
problems. For example, actors need to manage data, programs, and computing 
resources in distributed and heterogeneous environments, and that has to happen 
under a variety of security conditions – from very stringent ones (possibly military 
grade) to relatively relaxed ones (e.g., academic institutions).  While some of the 
components may be operating under “grid” authentication rules (e.g., via certificates, 
such as using the GAMA framework [59]), some may use LDAP [60] based 
authentication, while others may be using yet another approach. How does one 
reconcile these mechanisms to allow trusted exchange of information among the 
workflow components?  

When accessing higher-security resources (e.g., in the National Laboratories) 
users are required to use encrypted connections (e.g., ssh-based, ssl-based, secure 
HTTP aided solutions, etc.) and often one-time passwords and other security devices. 
While secure connections are typically not an issue in workflow environments (e.g., 
Kepler has ssh and other appropriate actors), one time passwords can be an 
impediments since they may require use of special keys or security devices that 
prevent one-stop authentication paths, and in practice invariably require human 
intervention, thus slowing workflow related operations and communications that  
span authentication domains.  

While workflow related security, authentication, authorization and associated 
access control have been studied extensively over the last 10 or more years, the 
problem is still here. A more encompassing solution remains work in progress when 
it comes to scientific workflow environments. Usable environments support different 
authentication mechanisms but until identity management and security are treated in 
a more uniform way, they may represent a major obstacle to interoperability among 
different workflow frameworks and solutions. 

9 Fault-Tolerance 

Application of the workflow technology to a specific domain or project, requires 
information about the domain, project content, participants (both developers and 
end-users), schedules, resources, other relevant technology, and development of the 
corresponding operational profiles for the scientific workflow system. Operational 
profile is the set of relative frequencies which tells us how often a particular 
scenario, function or capability occurs in practice [34]. Specifically, one would first 
identify and categorize workflow system users, functionalities and resources and 
frequency of use of each. This would allow mapping amongst them. This finally 
yields an operational profile that needs to be supported during the workflow system 
use. The mappings and the operational profile allow us to recognize functional 
alternatives and introduce adaptive or fault-tolerant behavior into the model. 

There are two basic forms of run-time fault-tolerance: forward-recovery (which 
includes failure masking and redundancy based failover), and backward-recovery 
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(which includes check-pointing) e.g. [15, 16, 31]. Exception handling is a very 
traditional way of managing run-time problems [e.g., 16, 31]. It is also used in the 
workflow-oriented environments [e.g., 48, 49]. Exception handling can involve 
forward-recovery, backward-recovery, or graceful termination. More recently web-
services community has recognized the need for some form of standardized fault-
tolerance in the service provisioning through replication [56]. 

A run-time failure of a system is often the result of a series of events – sometimes 
that of a set of very complex and unexpected interactions. Typically, a failure is a 
result of  either a system fault  a design-time developer or researcher error that 
materializes at run-time, or it is a user error at execution time, or there is an issue 
with the underlying infrastructure (including invoked services). An initial design 
error can become a fault in the initial product. This fault can propagate (as a series of 
defects) to the final executable version of the workflow. When the workflow 
encounters that defect during execution, the workflow enters an error-state. If that 
error-state, or its result, becomes visible to the end-user, it becomes a failure that 
may have anywhere from no consequences to catastrophic consequences.  Similarly, 
a call to a workflow component that fails at run-time may again force the workflow 
into an error-state, and manifest as a failure. So, run-time workflow failures can be 
caused by one or more of the following non-comprehensive set of events: 

Use errors caused by end user, for example entering incorrect data.  
Error-state caused by network difficulties, such as congestion. 
Error-state initiated by workflow component faults due to a programming 
issue.
Hardware faults and failures 
Error-states caused by failures of services, such as the unavailability of a 
certain service (e.g., actual web service, or a remote computational or 
storage service) 
Failures in any underlying software components (e.g., operating system 
kernel bugs, device misconfigurations, etc.) 

9.1 Illustration 

In illustrating fault-tolerant solutions in the context of network-based workflows we 
do not plan to discuss the cost of the services, and we make some assumptions:

Failures of redundant services are not correlated, or at least the probability 
of correlated failures is very low. This basically means that the failure of 
one service doesn’t affect another functionally equivalent (or perhaps 
replicated) service. For example, we assume that redundant services are 
hosted on separate perhaps geographically distributed servers, so that in the 
case one server fails, only one service will be affected. However, 
assumption also implies that failures are not caused by a basic algorithmic 
flaw that may be present in both services and may result in identical but 
wrong responses from all redundant services [16]. 
In discussing system reliability, we will make the assumption that all 
workflow services have the same failure and recovery probability. This, of 
course may not be a realistic assumptions, but it provides a vehicle for the 
model discussion. An enormous amount of work has been already done by 
others in modeling and simulation of redundant components under a variety 
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of conditions, e.g., see [31, 33] and references therein, and the reader should 
consult that literature before deciding on a particular solution. 

The first assumption does not apply to the case when there are no redundant or 
replicated services, i.e., if we assume that different services used by the workflow are 
deployed in a serial fashion4. This is the worst-case scenario where failure of one 
service means the failure of the entire workflow since no alternative services are 
being provided. Of course, one could actually have different functions performed in 
parallel and at different locations, if the (data) flow model allows that (and this is 
sometimes done). But, in practical terms a failure of either of those services again 
fails the workflow. Therefore, serialization assumption can still be used. We also 
assume that services are atomic, i.e., we do not discuss the option of seamless fail-
over once a service has been engaged, we assume that that issue is handled through 
re-start of that part of the workflow. 

Today’s web services appear to have a varying and broad range of failure 
probabilities depending on their implementation and quality, how they are being 
hosted, who is hosting them, where they are being reached from, etc. One value for 
average failure probability found in the literature is 0.045, this translates into more 
than one failure a month. [17, 18, 19]. During peak-time operation, that failure 
probability may become as high as 0.2, or more than two failures to deliver a service 
on request as day, depending on the request type and duration. Of course, there are 
services that do much better and much worse than this range indicates. The level to 
which improvements need to be made may be domain specific. For example, 
educational workflows need to have availability of at least 0.95 [35]. We use these 
two numbers to provide an illustration of a possible range of service failure 
probabilities upon which one would have to improve, and to illustrate the power of a 
simple redundancy-based fault-tolerance strategy.  

Consider a scientific workflow that invokes serially 3 different network-based 
services before it is done. Let one of those services fail. Then, the workflow will not 
finish successfully unless mitigation is put in place. For example, at the point of 
failure we could recover back to the point where the workflow was check-pointed, 
and then we could re-run the remaining part. Alternatively, we could try to mask the 
failure of the component service. We focus on the latter. Given the assumptions 
above, the probability that the workflow fails is the probability that at least one of the 
services fails [16,31]. In other words: 

PF = 1 – 
n

i
ip

1

)1(                                                               (1) 

Where pF is the probability that the workflow will fail, pi is the probability that 
service i fails, and n is the number of serial services in the workflow. Using the 
example numbers and Eq. 1, on the “average” PF = 1 - (1-0.045)3 = 0.129, and in the 
“heavy load” case PF = 1 - (0.8)3 = 0.488. Obviously, reliability R (which is one 
minus failure probability) is not too good. Figure 10 shows a graph of the failure 
probability for this example. System failure probability grows considerably with the 

4 However, physical co-location of serial or replicated services runs another risk – that of the 
whole site power or other type of outage.  
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number of serial services (Equation 1). In the ”heavy load” situation, the failure 
probability is very close to one once the number of services in the workflow exceeds 
15. 
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Fig. 10. Failure probability of a serial system without fault-tolerance 

While the numbers in the graph may seem excessively pessimistic, it is clear that 
as the number of services in a complex workflow grows, service failures can have a 
dramatic effect on the whole system operation.  A well known solution is to use 
multiple backup servers (service replication) in parallel to counter physical 
infrastructure and networking failures, and/or to use alternative but functionally 
equivalent services if other types of failures may be suspected. Then, if one of the 
services fails, the workflow can automatically switch to an alternative one. 

Let’s assume that the probability that a service, or any of its alternative fails, is p. 
Then, the probability that such redundant service fails is that of a group of parallel 
components, i.e., all of them need to fail before an end-user visible failure occurs. 
For example, the reliability of a service with 3 alternatives is the probability that at 
least one of the alternatives is operational, i.e., R = (1-p) + p(1-p) + p2(1-p) = 1 – p3

Generalizing: 

R = 1 – pm                                             (2) 

where m is the number of alternatives5. Applying (1) and (2) to the entire workflow, 
the failure probability of the workflow would be: 

PF = 1 – (
n

i

m

j
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i

m
ip                                    (3) 

5 Note:  (1-p) + p(1-p) + p2(1-p) + … + pm-1(1-p) = 1 – p + p – p2 + p2 – p3 + … + pm-2 - pm-1 + 
pm-1 - pm =  (1 - pm)
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where PF is the probability that the workflow fails, n is the number of service in 
the workflow, m is the number of replicas of each service in the workflow (in this 
example, we assume that the number of replicas is the same for all services), and pi is 
the probability that service i fails. 
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Fig. 11. Failure probability of a series – parallel model  (p = 0.045) 
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Fig. 12. Failure probability of a serial system with and without fault-tolerance. 

Consider again our example with three “serial” services. Let each service have 2 
backup services (m=3). Then the probability that at least one of the services fails 
(thus the workflow fails), and given our two illustration failures rates, PF = 1 – (1 – 
0.0453)3 = 0.00027 and PF = 1- (1- 0.23) 3 = 0.0238. Figure 11 illustrates different 
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failure probabilities based on this fault-tolerance model given the assumption that 
p=0.045 for all services. Different lines represent the number of alternatives 
available for each service. We notice that, even when there is only one alternative for 
each service (m=2), failure probability is significantly lower than that of a workflow 
without any fault-tolerance support. For example for a workflow with 25 services to 
invoke, the failure probability goes down from almost 0.7 to 0.05 for m=2, down to 
0.002 for m=3, and down to 0.0001 for m=4. Notice that in this case and with our 
assumptions, every time we add an alternative service, the failure probability can go 
down by a factor of 20 or more. 

In comparing the two models, we find the potential for considerable improvement 
using redundancy. Of course, the caveat is that the redundant services must not 
exhibit significantly correlated failures, either due to their (co-)location, or for 
algorithmic or other reasons. For example, with p=0.045, n=3 and m=3, workflow 
failure probability is reduced from 0.129 to less than 10-3. Figure 12 compares failure 
probability of a workflow with no fault-tolerant support, and a workflow with 
redundancy-based service-level fault-tolerance, where each service has only one 
backup service. Notice again that, even with only one backup service, the reliability 
increases dramatically. 

9.2 Implementations 

To achieve some measure of fault-tolerance, there should be at least one backup 
server running identical copies of the services or there should be another 
implementation of the services. Also, the workflow should be able to switch to that 
server/service in the case the primary server/service fails.  The most obvious method 
to implement that is to simply encode the extra service location (e.g., URL, IP 
number, or DNS name) within the code of the actors, i.e. hard code the location of 
the alternatives. This way, by using a simple control structure, the actor then tries to 
invoke the backup services when the primary service fails to respond.  We should 
note that the mechanism of this method is transparent to the user. The only impact 
that it might have on the performance is a small delay, because the flow may have to 
wait to confirm timeout of  the primary service before it tries the alternative, and the 
timeout may take a few seconds. The advantage of using hard-coded alternatives is 
that this provides very simple basic fault-tolerance. It makes the workflow more 
resilient with respect to simple failures of known services. But there are also several 
disadvantages. The most significant one is that when the location of the services 
changes, or when we want to add more backup services, then we need to change the 
code and recompile the actors and redistribute them. This complicates matters. One 
options it to provide an interface for the end user to input the location of the primary 
and alternative services. That also is not very efficient because it requires that the 
end user know the location of different servers. Thus, the need for a more versatile 
solution emerges. The next two solutions address that issue. 

Instead of simply hard coding the location of different services, one could use a 
less intrusive and more dynamic approach. This approach stores all relevant 
information about the services in a file (the choice nowadays is an XML file). That 
XML file is then kept on a separate server to be accessed by the actors at run-time. 
An actor parses file, and stores the results in an internal data structure. An alternative 
is to provide the alternate service locations as actor parameters – this is what some 
Kepler actors do today. When the time comes to invoke a service, system retrieves 
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the relevant information and invokes the service at the primary location. When this 
succeeds, system continues executing the rest of the workflow. If the invocation 
fails, system can try an alternative service from the list.  This approach presents a 
more versatile solution than the previous one since it does not require that the 
location of services be hard coded. Thus it allows adding and modifying the location 
of the services without modifying the source code. The user would still need to know 
the location of the XML file, and which alternative service is to be invoked. Both can 
be passed as actor parameters.  

A third approach is to use UDDI [20] based registry of services. Using this 
method, the end user needs only to supply the name of the service the user is trying 
to invoke, and the actor then searches the repository to find matching services. Note 
that there is an underlying assumption that a proper set of compatible keywords (and 
ontologies) exists for all registered services. That service is then invoked.  If this is 
successful, the actor continues its execution.  If invocation fails, another search can 
occur to find yet another alternative service. The advantage of using this method 
over the previous ones is that the repository can regularly check whether a service is 
still online by using the heartbeat approach. This feature isn’t supported in the 
previous method, i.e. in the case one of the services isn’t available, the XML file or 
parameter entry has to be manually corrected, or it would keep on returning the 
location of the unavailable service. Another advantage is the flexibility in adding or 
modifying existing services. In order to add an additional service, all that needs to be 
done is to add the service to the repository through an easy-to-use web interface. 
Thus no configuration files or parameters need to be modified. 

Figure 13 shows a screenshot of the parameters required for a fault tolerant web 
service actor. Only a keyword, method name, username and password (if username 
and password are used) are required. The actor automatically extracts the namespace 
and location URL from the retrieved services lists. 

Fig. 13. A fail-over Kepler web-service actor. 

It is possible that one of the services returned in the search isn’t what we’re 
looking for. This can be avoided by providing a more complex search phrase, for 
example in the case of the Genbank service illustration in Figure 13, the user could 
enter “SDM SPA Genbank” instead of just “Genbank”. Another approach is to have 
a sample input and output, then invoke the service with that sample input and 
compare the outputs, to make sure that the service in question is indeed what we’re 
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looking for. This approach involves more computation and a comparison step, and 
thus might cause a slight delay. But it can also be looked at as a way to provide 
validation, since in the case the outputs didn’t match; we can consider that the 
service in question is either an incorrect one, or is not behaving properly. 

9.3 Further Improvements 

A natural alternative worth emphasizing in this context is to simply just re-try one or 
more times services that appear to have failed. Sometimes services do not respond 
due to oversubscription or network glitches, and re-trying solves the problem. Re-
trying a service is a general (and very common) approach that can be used in 
conjunction with all methods discussed above. An example of that (at the workflow 
execution level) is the fault-tolerant shell [32]. However, all discussed solutions have 
some inherent limitations. The most important one is that they do not deal with the 
case when the web service is operational but is not behaving properly, for example 
not returning correct results, or where the workflow is in the middle of a 
conversation with the service when the service fails and the state of the service 
matters. Solutions discussed above can only handle problems caused by initial 
unavailability of the services.  

A more complex, perhaps voting based scheme may be needed to deal with 
comparison of results, with semantic differences among alternatives, and with state-
recovery. Further improvements need to include validation of the results before 
proceeding with the rest of the workflow. That can be done, for example, by 
submitting an appropriately selected sample request and comparing the result with a 
saved result before submitting the rest of the results. That approach may require 
sophisticated comparison algorithms since services interfaces may be quire complex, 
but this may be able to mitigate a correctness failure. Yet, another approach could 
involve invoking several identical services and comparing their results, then 
choosing the consensus response. Both methods present a possible solution to the 
validation issue, but might result in additional processing time, thus delaying 
workflow execution. They are also not comprehensive.  In this context an issue that 
will need further work is handling of correlated failures. This requires a much more 
complex model. Interested readers may wish to consult [31, 33], and references 
therein, for more information on different fault-tolerance and reliability models. 
Software rejuvenation [27, 28] may be another solution that can be used to provide 
increased availability and failure-avoidance, but its discussion is beyond the scope of 
this paper. 

10 Summary 

As scientific discovery and problem solving becomes more complex and more 
dependent on high-end information technology, comprehensive end-to-end data and 
process management solutions are needed to reduce the IT burden on the scientist. A 
group of technologies, called scientific workflow support frameworks, that do that is 
maturing and we expect to see an increased use of these solutions. One such 
technology is the Ptolemy II based environment called Kepler. This paper has 
discussed some of the issues associated with practical automation of scientific 
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processes and workflows and has illustrated this with workflows developed using the 
Kepler framework and tools. The topics covered include general workflow 
development concepts, the impact of information technology overhead and 
complexity in this context, the structure of Kepler, and issues related to provenance 
and fault-tolerance. Open issues for high-end scientific workflow technologies 
include autonomic behavior (auto-recovery and fault-tolerance), authentication and 
security management, data and provenance management, run-time data and process 
monitoring and steering (e.g., via “dashboards”), semantic level verification and 
validation of workflows during construction and at run-time, and development of 
appropriate end-user visual and other interfaces (e.g., workflow construction 
“wizards” and persistent portals).  

We expect that scientific workflow support technologies will play a critical role 
in the world of peta- and exa-scale computing supported research and discovery, and 
in the next 10 years will become a standard feature of the cyberinfrastructure. A key 
issue that will need to be resolved in this context will be interoperability. While 
many workflow related standardization efforts are under way, it is currently not 
trivial to exchange more complex information and service, not to mention workflows 
themselves, among for example Kepler, Taverna [61] and Windows Workflow 
Foundation [4] environments.  In the future, there will be many scientific workflow 
support environments in operation – some open source, some not.  But, unless there 
is a relatively widely accepted way of exchanging information and services among 
the workflows constructed in different environments, different scientific 
communities may be have difficulties collaborating. To avoid “stove-piping” and 
impediments to progress that that brings, it is very important that open interfaces be 
defined now and that the existing and new workflow environments be architected 
and implemented in the spirit of SOA [50]. 

11 Acknowledgments 

We would like thank our colleagues working on the U.S. Department of Energy 
(DOE) Scientific Data Management Center project for their support and interest. 
This work has been supported in part by the DOE SciDAC grants DE-FC02-
01ER25484 and DE-FC02-07ER25809, IBM Shared University Program, and 
StrikeIron Inc. The Kepler and Vistrails projects are also funded by grants from the 
National Science Foundation. 

12 References 

1. D. Georgakopoulos, M. Hornick, and A. Sheth, "An Overview of Workflow 
Management: From Process Modeling to Workflow Automation Infrastructure," 
Distributed and Parallel Databases, Vol. 3(2), April 1995. 

2. “Kepler Project” Website, 2006. http://kepler-project.org 
3. TRIANA Project, October 2006, http://www.trianacode.org/ 
4. Windows Workflow Foundation (http://msdn2.microsoft.com/en-

us/netframework/aa663328.aspx) 
http://www.microsoft.com/windowsserversystem/virtualserver/default.mspx 

Grid-Based Problem Solving Environments            57



5. B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. 
Lee, J. Tao, and Y. Zhao. Scientific Workflow Management and the Kepler 
System. Concurrency and Computation: Practice & Experience, 18(10):1039-
1065, 2006. 

6. B. Ludäscher and C. A. Goble. “Guest Editors: Introduction to the Special 
Section on Scientific Workflows.” SIGMOD Record, 34(3), 2005. 

7. R. Mount et al., Department of Energy, Office of Science report, “Data 
Management Challenge”. Nov 2004, http://www.er.doe.gov/ascr/Final-report-
v26.pdf 

8. Altintas, S. Bhagwanani, D. Buttler, S. Chandra, Z. Cheng, M. Coleman, T. 
Critchlow, A. Gupta, W. Han, L. Liu, B. Ludäscher, C. Pu, R. Moore, A. 
Shoshani, and M. Vouk, “A Modeling and Execution Environment for 
Distributed Scientific Workflows”, demonstration track, 15th Intl. Conference 
on Scientific and Statistical Database Management (SSDBM), Boston, 
Massachussets, 2003. 

9. R.I. Balay, Vouk M.A., Perros H., “Performance of Network-Based Problem-
Solving Environments,” Chapter 18, in Enabling Technologies for 
Computational Science Frameworks, Middleware and Environments, editors 
Elias N. Houstis, John R. Rice, Efstratios Gallopoulos, Randall Bramley, 
Hardbound, ISBN 0-7923-7809-1, 2000 

10. M.A Vouk., and M.P. Singh, "Quality of Service and Scientific Workflows," in 
The Quality of Numerical Software: Assessment and Enhancements, editor: R. 
Boisvert, Chapman & Hall, pp.77-89 , 1997. 

11. M.P. Singh, Vouk M.A., “Scientific workflows: scientific computing meets 
transactional workflows,” Proceedings of the NSF Workshop on Workflow and 
Process Automation in Information Systems: State-of-the-Art and Future 
Directions, Univ. Georgia, Athens, GA, USA; 1996, pp.SUPL 28-34. 

12. “The Ptolemy II Project” website, 2005. 
http://ptolemy.eecs.berkeley.edu/ptolemyII/ 

13. S.E. Elmaghraby, "On generalized activity networks," J. Ind. Eng., Vol. 17, 621-
631, 1966. 

14. R.L. Dennis, D.W. Byun, J.H. Novak, K.J. Galluppi, C.C. Coats, and M.A. 
Vouk, "The Next Generation of Integrated Air Quality Modeling: EPA's 
Models-3," Atmospheric Environment, Vol 30 (12), pp 1925-1938, 1996. 

15. J.C. Laprie, and C. Beounes, “Definition and Analysis of Hardware- and 
Software-Fault-Tolerant Architectures”, IEEE Computer Society Press, Volume 
23, Issue 7, Pages: 39 – 51, July 1990. 

16. D.F. McAllister, and M.A. Vouk, "Software Fault-Tolerance Engineering," 
Chapter 14 in Handbook of Software Reliability Engineering, McGraw Hill, pp. 
567-614, January 1996.  

17. ACME Laboratories, “Web Servers Comparison”,, 
http://www.acme.com/software/thttpd/benchmarks.html, 1998. 

18. Iyengar, A.; MacNair, E.; Nguyen, T. , “An analysis of Web server 
performance”. Global Telecommunications Conference, 1997. GLOBECOM 
'97., IEEE Volume 3,  3-8 Nov. 1997 Page(s):1943 - 1947 vol.3 

19. Lloyd Ian, “Government website failure – Is it so shocking?” March 06, 
http://www.webstandards.org/2006/03/31/government-web-site-failure-is-it-so-
shocking-2/ 

20. “OASIS UDDI “, OASIS Open website 2005 http://www.uddi.org 

58            Grid-Based Problem Solving Environments



21. “StrikeIron Web Services Business Directory”, StrikeIron Inc. 2005. 
http://www.strikeiron.com 

22. “Apache Web Services Project:  jUDDI” website. 2005 
http://ws.apache.org/juddi/ 

23. “Soap UDDI Project” website, 2005. http://soapuddi.sourceforge.net/ 
24. Elias N. Houstis, John R. Rice, Efstratios Gallopoulos, Randall Bramley, 

“Enabling Technologies for Computational Science Frameworks, Middleware 
and Environments”, Hardbound, ISBN 0-7923-7809-1, 2000 

25. Crnkovic and M. Larsson (editors), Building Reliable Component-Based 
Software Systems, Artech House Publishers, ISBN 1-58053-327-2, 2002, 
http://www.idt.mdh.se/cbse-book/ 

26. Common Component Architecture Forum, http://www.cca-forum.org/, accessed 
February 2006 

27. Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software Rejuvenation: 
Analysis, Module and Applications”, in Proc. of 25th Symposium on Fault 
Tolerant Computing, FTCS-25, pages 381–390, Pasadena, California, June 
1995.  

28. K. Vaidyanathan; Trivedi, K.S. “A comprehensive model for software 
rejuvenation”. IEEE Transactions on Dependable and Secure Computing, 
Volume 2,  Issue 2,  April-June 2005 Page(s):124 - 137 

29. S.E. Elmaghraby, Baxter E.I., and Vouk M.A., "An Approach to the Modeling 
and Analysis of Software Production Processes," Intl. Trans. Operational Res., 
Vol. 2(1), pp. 117-135, 1995. 

30. G. Chin. Jr., Leung, L.R., Schuchardt, K.L., and Gracio, D.K. (2002). New 
Paradigms in Collaborative Problem Solving Environments for Scientific 
Computing. In Proceeding of the 2002 International Conference of Intelligent 
User Interfaces (IUI 2002), (Jan. 13-16, San Francisco, CA). ACM Press, New 
York. 

31. M.A Vouk, "Software Reliability Engineering of Numerical Systems," Chapter 
13, in Accuracy and Reliability in Scientific Computing, Editor: Bo Einarsson, 
ISBN 0-89871-584-9, SIAM, 2005, pp. 205-231 [PDF - Draft] 

32. Cooperative Computing Lab at the University of Notre Dame 
(http://www.cse.nd.edu/~ccl/software/ftsh/) 

33. M.R. Lyu (ed.), Software Fault Tolerance, Trends-in-Software Book Series, 
Wiley, 1994 

34. J.D. Musa, ªOperational Profiles in Software-Reliability Engineering, IEEE 
Software, vol. 10, no. 2, pp. 14-32, Mar. 1993. 

35. M. Vouk, R.L. Klevans, and D.L. Bitzer, "Workflow and End-User Quality of 
Service Issues in Web-Based Education," IEEE Trans. On Knowledge 
Engineering, to Vol 11(4), July/August 1999, pp. 673-687. 

36. Report of the National Science Foundation Blue-Ribbon Advisory Panel on 
Cyberinfrastructure, January 2003, http://www.nsf.gov/od/oci/reports/atkins.pdf 

37. Department of Energy, Office of Science, “Data Management Report”. May 
2004, http://ultralight.caltech.edu/gaeweb/portal/misc/2005/05DMW/Final-
report.pdf 

38. Edward A. Lee and Steve Neuendorffer. MoML — A Modeling Markup 
Language in XML — Version 0.4. Technical report,  University of California at 
Berkeley, March, 2000. 

Grid-Based Problem Solving Environments            59



39. International Provenance and Annotation Workshop (IPAW’06), Chicago, 
Illinois, May 3-5, 2006, http://www.ipaw.info/ipaw06/ 

40. Simmhan, Y. L., Plale, B., Gannon, D., A survey of data provenance in e-
science. In SIGMOD Rec. 34(3): 31-36, 2005 

41. Altinats, I., Barney O., Jaeger-Frank, E. ”Provenance Collection Support in 
Kepler Scientific Workflow System,” Proc.  of the IPAW’06, 
www.ipaw.info/ipaw06/proceedings/CameraReady_s5_2.pdf

42. Foster, I., Voeckler, J., Wilde, M., Zhao, Y., “Chimera, A Virtual Data System 
for Representing, Querying, and Automating Data Derivation,” In Proceedings 
of the 14th Conference on Scientific and Statistical Database Management, 2002 

43. Greenwood, M., Goble, C., Stevens, R., Zhao, J., Addis, M., Marvin, D., 
Moreau, L., Oinn, T., “Provenance of e-Science Experiments - experience from 
Bioinformatics,” In Proceedings of The UK OST e-Science second All Hands 
Meeting 2003 (AHM'03) 

44. Groth, P., Luck, M., Moreau, L. “A protocol for recording provenance in 
service-oriented grids,” In Proceedings of the 8th International Conference on 
Principles of Distributed Systems (OPODIS'04), 2004 

45. Bavoil, L., Callahan, S., Crossno, P., Freire, J., Scheidegger, C., Silva, C., and 
Vo, H., “Vistrails: Enabling interactive multipleview visualizations.” In IEEE 
Visualization 2005, pages 135–142, 2005 

46. Some examples of open source scientific workflow solutions: BioPipe, BizTalk, 
BPWS4J, DAGMan, GridAnt, Grid Job Handler, GRMS (GridLab Resource 
Management System), GWFE (Gridbus Workflow Engine), GWES (Grid 
Workflow Execution Service), IT Innovation Enactment Engine, JIGSA, Kepler, 
Karajan, OSWorkflow, Pegasus (uses DAGMan), ScyFLOW, SDSC Matrix, 
SHOP2, Taverna, Triana, wftk, YAWL Engine, WebAndFlo, WFEE, etc.  see 
http://www.gridworkflow.org/snips/gridworkflow/space/Workflow+Engines,  
http://www.extreme.indiana.edu/swf-survey/  

47. Win Bausch, Cesare Pautasso, Reto Schaeppi, Gustavo Alonso, “BioOpera: 
Cluster-Aware Computing,” CLUSTER 2002, pp. 99-106  

48. Claus Hagen, Gustavo Alonso, “Flexible Exception Handling in the OPERA 
Process Support System,” ICDCS 1998, pp. 526-533 

49. Fabio Casati, Stefano Ceri, Stefano Paraboschi, and Giuseppe Pozzi, 
“Specification and Implementation of Exceptions in Workflow Management 
Systems,” ACM Transactions on Database Systems 24(3), Sept. 1999 

50. Service Oriented Architecture (SOA), Wikipedia, 2006 
(http://en.wikipedia.org/wiki/Service-oriented_architecture), also http://www-
306.ibm.com/software/solutions/soa/, and references therein. 

51. OASIS, http://www.oasis-open.org/ (e.g., BPEL) 
52. OWL, http://www.w3.org/TR/owl-features/ 
53. Web Services standards at http://www.w3.org/TR  (e.g., WSDL and similar). 
54. KEPLER provenance framework at http://kepler-

project.org/Wiki.jsp?page=KeplerProvenanceFramework 
55. VisTrails (http://www.vistrails.org) 
56. J. Salas, F. Perez, M. Patia-Martinez, R. Jiminez-Peris, “WS-Replication: A 

Framework for Highly Available Web Services,” WWW Conf., Edinburgh, 
Scotland, May 2006. 

60            Grid-Based Problem Solving Environments



57. J. Freire, C. Silva, S. Callahan, E. Santos, C. Scheidegger and H. T. Vo, 
“Managing Rapidly-Evolving Scientific Workflows,” International Provenance 
and Annotation Workshop (IPAW), LNCS 4145, pages 10-18, 2006. Springer. 

58. C. Scheidegger, D. Koop, E. Santos, H. Vo, S. Callahan, J. Freire, and C.Silva. 
“Tackling the Provenance Challenge One Layer at a Time,” submitted to 
Concurrency And Computation: Practice And Experience. (Special issue on the 
first Provenance Challenge.) 

59. Grid Account Management Architecture (http://grid-
devel.sdsc.edu/gridsphere/gridsphere?cid=gama), SDSC, 2005, and Mueller, 
GEON, 2006 
(http://www.geongrid.org/presentations/webcasts/Mueller_GAMA_GEON_May
06.ppt) 

60. LDAP, SEEK 
(http://seek.ecoinformatics.org/Wiki.jsp?page=CertificateAuthorityDesign) 

61. Taverna Project Website (http://taverna.sourceforge.net/) 
62. SciRUN (http://software.sci.utah.edu/scirun.html/) 
63. Ensight (http://www.ensight.com/home/index.php) 
64. Virtual Computing Laboratory (VCL) - http://vcl.ncsu.edu 

Grid-Based Problem Solving Environments            61



Q&A – Mladen Vouk 

Questioner: Bill Applebe 
Component-based software architectures, like .NET and J2EE work well 
because they are component-based from top to bottom. A key problem for 
scientific component-based software is that components only extend down 
so far, and modifying a Kepler application may require modifying the 
wrapped legacy codes.  What approaches might be used to overcome these 
problems? 

Mladen Vouk 
The approach we are taking is to identify similarities for classes of workflows 
(e.g., large scale simulations that may produce terabytes at a time at 
distributed locations, but analyze and steer results at a different locations), 
then develop a "template" workflow and data models that would serve these 
applications. We initially develop wrappers that are intelligent enough to 
avoid legacy code changes (if possible), but later we work with end-users to 
have them accept (develop) a workflow framework compliant data-model and 
interfaces (especially when they write new codes). 

Here is where it would be very important to develop such plug-in capability in 
a broadly accepted open interface language/protocol/format so that 
compliant apps could "plug" into not just one, but any number of relevant 
workflow frameworks that support such an interface. This provides a lot of 
options for end-users and resolves potential monopoly and framework lock-in 
situations. 

Questioner: Bill Gropp 
Have techniques such as aspects been considered to address cross-cutting 
issues such as security and authentication in a workflow diagram? 

Mladen Vouk 
Not yet. Security and identity management are big issues and we are 
seriously pursuing several avenues. In our case, the issues are particularly 
complex when workflows cross framework boundaries, e.g., both grid-based 
and non-grid based resources are mixed in the same workflow.  

Questioner: Dennis Gannon 
Why not use Grid GSI security and capability-based authorization? 

Mladen Vouk 
Only a fraction of our platforms / clients use, or have, a Grid GSI compliant 
facility. We often have to deal with other than Grid GIS mechanisms, and 
mixing among these different mechanisms adds to the complexity.  



Questioner: Bill Gropp 
What can be done to reduce the fragmentation of many open source 
projects? 

Mladen Vouk 
Ideally, we would all agree on a common set of interoperability formats, 
protocols, semantics, interfaces, etc., so that the mixed-workflow 
programming would be possible before too much stove-piping sets in.  

Questioner: Mary Thomas 
What is the current state of compilers that can support workflows, e.g. 
compilers so I can run "fort -og" (optimize for the grid)? 

Mladen Vouk 
End-to-end workflow compilers that span different applications, platforms, 
layers, language frameworks, and models, etc., is the long-term goal, but 
unfortunately we have a long way to go before we get there.  

Ken Kennedy 
This is a very interesting question and a complex one. Right now, the 
VGrADS system and other Grid schedulers assume the vendor compiler will 
be used on each platform, so there is no active attempt to tailor the code in a 
workflow step or even a series of steps to the context of the actual Grid 
workflow.  Nevertheless, there are many opportunities that could open up if 
grid-aware compilers were available. Many of these opportunities also arise 
in compilation for heterogeneous machines.  An interesting idea would be to 
compose workflow steps that will run on a single resource into a single 
application which could avoid disk accesses, much as a UNIX pipe does this. 

In the long term, it would be good if the compiler could translate a single 
program, written in Matlab, Python, C, or Fortran, into an optimized Grid 
computation. Many groups are working on this idea right now, but there is 
much left to be done. 



Monday AM Panel Discussion 

Panel:
 Dennis Gannon 
 Ken Kennedy 
 Mladen Vouk 

Questioner: Richard Hanson 
Libraries of software routines are well established as a programming model 
and tool.  What do you visualize as an execution model for grid computing 
and workflows? 

Dennis Gannon 
As I outlined in my talk, I see the programming model for grids to be workflow 
by component composition of services.  The service model is well suited to 
provide a virtualization layer above heterogeneous, distributed, unreliable 
resources.  The execution model is invocation of services by a workflow 
engine and reliable delivery of events. 

Ken Kennedy 
In the long run, I would see the programming interface as being similar to the 
one that is used today in normal single-platform applications, except that 
invocations would be redirected to machines offering the services.  All this is 
possible now, although the scheduling of communication and computation 
needs to take performance into account.  As to how the services would be 
paid for, each service supplier would enhance the value of his/her resource 
by offering the library services, which would allow them to charge more. 

Mladen Vouk 
I expect that the workflow programming models of the future will allow a 
composite of the solutions ranging from network-delivered high-quality 
services of different granularity, with very well defined interfaces, and with 
good ability to interoperate both with other workflow models and with both 
grid and other than "grid" based communication and resource sharing 
solutions. 

Questioner: Mo Mu 
What do you think is the role of APIs in the composition of workflows as a 
mechanism/standards to ensure the proper fitting of components/services? 

Dennis Gannon 
API's play a very critical role.  In a service based architecture, the interface to 
each component service in a workflow is an API.  It is a precise specification 
of the types of messages a component can understand and act upon.  It also 
provides a specification of the messages a component can generate. 



Ken Kennedy 
I think we will need very general API specifications that go beyond the 
current type matching in component integration systems. Additional useful 
information might be size of data arrays or files, shape, etc.  Knowing this 
information might permit the scheduler to pick the most efficient service for a 
given invocation context.  So the short answer is that good API specifications 
will be very important both in ensuring correctness and efficiency. 

Mladen Vouk 
Well defined, open and information rich APIs are extremely important in 
ensuring interoperability of workflows and understanding of the semantics 
behind different components and services. Without that we are heading 
towards another mixed-language programming problem that may create 
"stove-pipes" and isolation between communities instead of promoting the 
opposite. 

Questioner: Keith Jackson 
What role does semantic information play in a component architecture? What 
kinds of semantic information should a service expose? 

Dennis Gannon 
Semantic information plays an extremely important role in service 
composition.  It can tell us if two services can truly be composed.  Just 
because they are type compatible, it does not mean that the output of one 
service is really suitable for the input of another.  Semantic information goes 
well beyond what you can express in standard type theories.  For example, it 
can tell you about the dynamic range of a service, information about its time 
complexity based on input values, information about resource requirements 
for a given input. 

Ken Kennedy 
There are two kinds of semantic information:  that which is of use to the 
developer and that which can be used by the compiler or program integration 
system to improve performance.  From the compiler perspective (my 
specialty) we need to know when two sequences of component invocations 
are equivalent in a certain calling context so that we can optimize the 
program to that context.  From that perspective, (asymptotic) running time of 
the underlying algorithm is important semantic information. 

Mladen Vouk 
I believe that without appropriate semantic information it will not be possible 
to move to large scale, diverse, hierarchical and verifiable, as well as fault-
tolerant, workflow solutions. There are probably be at least two major 
categories of semantic information: a) canonical (e.g., that associated with 
supporting sciences such as mathematics, statistics, computer science, 
information technology, ...) related to such elements as data and data 
structures, operations on those structures, related events and behaviors, 
constraints and assumptions, re-usable functions, process models, etc., etc.; 



and  b) domain specific (which may cover a wide range of properties, from 
domain specific data structures and operations to performance, reliability and 
security requirements, to domain specific process models and dos and don'ts 
etc.). The trick is to have rich enough and flexible enough models and 
interface specification options to allow interfaces to automatically exchange, 
match, and assess mutual semantic and other interface information and 
provide self-verification and validation. 

Questioner: Anne Trefethen 
How do we get community agreement on the semantics? 

Dennis Gannon 
First find a common meta-language to describe the semantics of 
components.  Second, we can work on basic interoperability.  One can start 
with a set of domains where this is a concern, for example, biomedical apps.  
This is an area where three or four of the major workflow tools are in current 
use and many of the same services are used. One could convene a meeting 
to look at interoperability and semantics. 

Ken Kennedy 
It is very difficult to agree on a language in which to specify semantics, 
because the language needs to support the reasoning styles that are needed 
by particular tools.  For example, in our work we wanted to be able to 
substitute a loop around a get of an out-of-core data array element with a get 
of a whole row or column.  There is no way to do that without having deep 
compiler concepts like dependence built into the language.  In other words, 
different systems will need different languages to support their activities. 

I should note that my group is working with a developer who wants to replace 
much of the functionality of full MPI with a smaller efficient set of primitives 
that could be combined to provide all the functionality of the current MPI.  In 
other words, they want a compiler that can replace MPI calls with provably 
equivalent calls to the lower-level library.  (Here Gropp comments that this 
was not done in the original because it was so tightly integrated with the 
underlying platform).  My comment in response:  The platform would be an 
additional (silent) parameter to the component library. 

Mladen Vouk 
I think that a fairly broad meeting, relatively soon --- probably within a year --- 
that would involve both open source and closed source workflow 
communities, developers and stake holders is an essential step in 
bootstrapping workflow related interoperability, interfaces, protocols, etc. 

Bill Gropp 
One example was the process that started the MPI Forum. Ken Kennedy 
called a workshop of many of the developers of message passing systems to 
answer the question "is it possible to standardize message passing for 
scientific computing?".  The result of this workshop was a commitment by 
many of those developers to consider a possible standard.  Mladen's talk 



listed many open source workflow system; perhaps a similar workshop would 
identify, if not one area of standardization, a much smaller number of topics, 
some of which may be able to develop standards or standard practices.  It 
may also provide a way to develop standards for the interoperation of 
workflow tools, or standards for sharing representations of workflows. 
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Abstract. The present paper deals less with Grid computing than with other 
aspects of this conference, namely numerical software. The goal of our work is 
to use mathematical modeling and computer simulation to avoid building non-
production prototypes in manufacturing processes. Of particular interest is to 
eliminate prototypes associated with painting processes used in the automotive 
industry. Since painting processes are difficult to simulate accurately, the 
numerical software employed in the computational simulation is quite complex 
and requires substantial computing power to get a decent result within the 
timeframes of an industrial operational environment. On the other hand, the 
rewards for getting it right go straight to a company's bottom line: eliminating 
prototypes leads to tangible savings in terms of paint and materials, man 
power, energy costs, reduced warrantee costs, improved operational processes, 
and improved quality of the finished product. Getting it right therefore, is the 
subject of this paper. 

1 Introduction 

To most people painting a car conjures up pictures, from Discovery Channel and 
elsewhere, of robots spray painting cars on an assembly line. Although this is the 
way most vehicles end up by being painted it is by no means the whole story. For 
that, one needs to go back and look at the processes that prepare the metal of the car 
body so that it can become the final shiny product seen on the road. 



That shiny product is the reflection of a sequence of processes that prepare the 
vehicle to sustain the effects from inclement weather - corrosion, while providing a 
base coating of the metal that enhances the quality of the finished vehicle. 

The processes are well known to most people, although they may not connect 
them to being applied to cars on the road. Broadly speaking the processes consists of 
cleaning the metal of the vehicle body, preparing the metal to receive paint, applying 
a protective coating - electrocoating, rinsing, and baking. The protective coating is 
organic and the baking process is the final act that melts the resin polymer in the 
coating to provide the required corrosion protection. 

It is crucial to get this sequence of painting processes right because errors at any 
stage have a detrimental impact on the bottom line of the automotive company, and 
some errors will become apparent to the unhappy owner. Errors will occur for a 
variety of reasons: maybe the cleaning was not effective enough, maybe some of the 
protective coating remains in puddles in the vehicle as it enters the oven, maybe the 
protective coating did not adequately cover all areas of the vehicle so that hard to 
reach areas do not have enough coating or maybe they do not have any. The list is 
almost endless, and each one of these items is significantly costly to fix. 

In an attempt to understand the causes of errors and identify suitable remedial 
action, companies have traditionally experimented with physical prototypes of new 
vehicles by subjecting them to the same painting processes. However, 
experimentation and testing on physical prototypes is necessarily limited to the 
number of prototypes that can be built, not to mention the costs incurred in terms of 
manpower, materials, time, and the fact that the physical operating conditions, i.e. 
the paint tanks and cure ovens, must be used for the experiments, and therefore the 
normal manufacturing process must be interrupted, which in itself is an unacceptable 
cost to bear. 

The hope of uncovering better ways of ensuring success in the application of the 
painting processes mentioned above is a vain one if all that is done is to use physical 
trial and error experimentation. On the other hand the hope becomes a reality if one 
can use computers to replace the physical nature of the experimentation. To do this 
requires that the painting processes must be simulated on a computer and this 
simulation requires detailed and accurate mathematical models of the underlying 
physics and chemistry of each painting process.  

2 Virtual Manufacturing 

Virtual manufacturing is the application of computer software to simulate a new 
product and the processes required to take that product from a design concept 
through to its actual manufacture using physical materials. Software simulation 
allows problems to be identified and remedied before the fabrication of the product 
begins.  

Virtual manufacturing is not a new concept; it has been around for several 
decades, promoted, justifiably, by the use of finite element techniques to model 
complex geometries thereby expanding the range of products that are susceptible to 
this process. 
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employing computational simulation as a replacement for testing and 
experimentation using physical prototypes. 

Computational simulations of painting processes are time dependent and for 
operational reasons a true time-stepping solution method must be employed. Solution 
domains involve complex geometries consisting of automobiles, paint tanks, 
cleaning tanks, and cure ovens. A virtual toolset that replaces physical trial-and-error 
testing thus requires incorporating all of these items and human experience into 
software that can be used easily by non-computer specialists, at both ends of the 
manufacturing chain: the upstream users at the design stage and the downstream 
users at the manufacturing stage. Only when this is done properly, and the software 
is validated, will users be convinced to switch to virtual tools as part of their 
everyday work environment. 

4 Validation 

The previous paragraphs help to characterize the nature of the software that 
industrial operational environments need. At the heart of the simulation software are 
methods and techniques that are traditionally described as numerical software. It is a 
long strenuous path to take that numerical software and form a system that 
commercial users will feel comfortable with. It is not only the look-and-feel of the 
software that is important it is the confidence that using the software will help them 
to understand better the physical manufacturing processes that they are really 
interested in. This means effectively that the users are confident of the results 
obtained from the simulation, in other words the software has been validated to 
produce accurate results that can be relied upon. This level of confidence is often not 
present in what many people regard as numerical software.

The testing regime, to which operational software of the functionality and calibre 
described above is subjected, is rigorous in the extreme. The process begins after the 
initial software has been written and takes the form of unit testing on geometries that 
exhibit some of the behavior expected in real automobiles and that can be verified by 
simple laboratory experiments conducted by the automobile company. Even these 
tests are more rigorous than those used to verify software published in ACM TOMS 
for example. As development proceeds, test geometries evolve in complexity until at 
a certain stage actual vehicle parts and bodies are used to stress test the software. 
This process is monitored closely by end users who actually reproduce the results by 
running the software themselves on their own machines and compare results with 
measurements taken of physical prototypes that have been stripped down and 
measured after painting.  

These testing and validation procedures contribute to confidence building and 
numerical software developers should take heed and learn from them. For example, 
in addition to testing on increasingly complex models the process benefits from the 
active participation of an independent champion of the software, namely the 
automobile user. As development of the software proceeds it is in the interests of the 
automobile company that the software succeeds and therefore aberrations and errors 
that come to light from their testing are immediately brought to the attention of the 
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developers. In the course of developing the virtual toolset described in this paper, 
approximately 80% of the time has been spent on testing, verification, and 
debugging. 

5 Virtual Paint Operations™ (VPO™) 

VPO™ is the name of a family of software products and services developed by 
BSSI over the last 10 years according to the descriptions given in the previous 
sections, where the champion in this case is Ford Motor Company in North America. 
The software addresses the simulation of the painting processes: electrocoating, 
drainage, baking, and the elimination of air pockets. Each simulator in the toolset is a 
time stepping predictor that enables the operator to access the results of the 
simulation at any moment in time. Thus, for example, it is possible for an operator to 
monitor the oven baking process and see how the predicted solution behaves at every 
second the automobile is in the oven. In this way, the company can develop 
operating strategies that enable them to take account of changes in operations, for 
example different oven loads, without interrupting daily operations in the actual 
oven. 

To address look-and-feel, the software is operated through a unified interface that 
provides access to all the simulators from one graphical user interface. The painting 
processes described previously are not independent of each other. For example, 
doing a poor job of electrocoating has an affect on the quality that can be expected 
from the cure oven. Consequently, the emphasis of the interface design is in the 
inter-operability of the simulators. Being able to simulate different what-if scenarios 
that couple baking, drainage, and electrocoating simulators - by passing data and 
results backwards and forwards between the different simulators - is an emphasis 
that stems from watching how users perform their daily tasks. The tasks are not 
independent and therefore as far as possible it should be possible to use the 
simulators in a similar way. 

Operational environments, especially manufacturing processes that produce 
millions of items per year, have a strong emphasis on timeliness: operations and 
decisions need to be taken quickly and in a time that does not hamper the 
manufacturing process or delay the throughput of items (vehicles in this case). 
Consequently, it is very important that the simulators produce results quickly – not 
necessarily the final results but intermediate ones. For example, in a simulation of 
the electrocoating process of a vehicle the VPO™ EPD code can produce output at 
every 1/1000th of a second and this output is available to the user for analysis as soon 
as it is produced. In this way, the user can take decisions without having to wait for 
the simulation to finish.  

The single most effective way of handling timeliness, and the production of 
results rapidly, is to use parallel computing, and in today’s environments clusters are 
the preferred architecture. 

Of course all of the above – real-time visualization of results, coupling, inter-
operability of simulators, and computational steering - assumes that information, in 
the form of intermediate results from the simulator, is readily available to the user, 
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which it is from the VPO™ System operating in a Grid-like environment, but it is 
not when the system is constrained to work in batch environments. 

Of the painting processes discussed above, the one that is the most complex to 
simulate and computationally intensive is electrocoating.  

6 Electrocoat Simulation – VPO™ EPD 

The process to apply rust-preventing coatings to automobiles must ensure that all 
parts of the vehicle have an adequate minimum build of paint. Currently, the main 
method used to minimize salt spray induced corrosion involves application of an 
epoxy-based urethane coating using an electrodeposition technique called 
electrocoating. Car parts are suspended from a gantry, lowered, and transported 
through a tank filled with the urethane paint called electrocoat or e-coat. Each part is 
treated as a cathode and by applying a voltage to the anodes; the paint adheres to the 
car part. 

Basic mathematical model 

(a) The rate that paint is deposited on the cathode is a function of the local 
current density j:

d/dt(LF(t)) = *j

LF is the thickness of the paint and  is the current efficiency. 

(b) The current density j, as a function of position over the cathode surface, is 
obtained from the normal derivative of the electric potential , which is 
determined by solving the 3D Laplace equation 2 =0, subject to 
boundary conditions. 

(c) No boundary values are specified on the cathode but there is a time 
dependent relationship between surface potential and current density. 

Basic numerical methods 

Complicated car frame geometry and anode configurations are composed of thin 
metal and are thus modelled as an infinitely thin crack geometry. In order to treat 
thin parts, boundary integral equations for surface potential and surface flux are 
employed. By using the integral equation approach the normal derivative of the 
electric potential, see (b) above, is calculated directly, i.e., without numerical 
differentiation. The integral equations are approximated using a Galerkin method, 
which allows for a straightforward and mathematically correct analysis of the 
hypersingular flux equation essential for treating thin parts as a single surface. 
Accurate and efficient Galerkin singular integration algorithms based upon analytic 
integration have been developed by Gray [16]. Finally, a new proprietary time 
stepping algorithm is used to track the time evolution of the paint distribution (a). 
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The boundary integral equations are reduced to a finite system of linear equations 
by approximating the surface in terms of the elements defined by the nodal points of 
a computational grid, and then interpolating the surface potential and flux in terms of 
values at these nodes. This results in a matrix system 

][][ HYG

In this system, H and G are square matrices and [ ] and [Y] are column vectors 
of the nodal values of potential and current. Taking into account the known boundary 
conditions, these linear equations must be solved simultaneously with the 
relationship between surface potential and current density (see (c) above). 

The deployed commercial versions of the VPO™ EPD Simulator implement the 
above numerical methods in Fortran 90/95 adapted to parallel processing using the 
message passing interface, MPI. 

Basic computational method 
The main computational method is parallel processing, and in this paper the 

discussion focuses on the use the message passing interface (MPI) [3]. The 
computational problem decomposes into four main steps. 

1. Data distribution: since each process needs access to the whole geometry the 
data files are read in and a copy stored on each process. We note here that one 
of the major users of this software is insisting on staying with MPI-1 [7]; we 
are developing using mpich2 [9] (but only using the MPI-1 subset). While 
MPI-2 [8] has facilities to allow each process to access the data files, we use 
the MPI-1 model where the master node reads the data and broadcasts it to all 
the other processes. 

2. Construction of the matrices: The G and H matrices are both of order n
where n is dependent on the total number of nodes defining both the car part 
(cathode) and the anodes and the tank. 
The elements of these arrays require the computation of a large number 
(O(n2)) of two dimensional numerical integrals. The basic computational loop 
is of the form 

do i S
      do k Tk

            integral (element(i), element(j)) 
where S is the set of all elements in the grid and Tk is a subset of these 
elements  that is dependent on the type of integration taking place and the 
position of the element within the grid. Each element in S is involved in four 
different types of integral and the execution speed of these types differs by 
almost two orders of magnitude. All the integrals may be performed 
independently and each one only affects a maximum of six rows in each array. 
In addition, the updated rows are generally close together due to the way in 
which the grid generator assigns node numbers. Finally, the set of elements, 
Tk, only affects the column indices that are updated although these indices 
may take on a wide range and, for one type of integral, almost the whole row 
may be involved. 
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It therefore seemed sensible to assign contiguous blocks of whole rows to 
each process and to arrange the processes in a single column. 

3. Solution of the linear system: This requires the factorization of G followed 
by the solution of n sets of linear equations where G is a general, dense matrix.  

4. Timestepping: At this stage the main computational overhead is a sparse 
matrix / full vector multiply where the order of the sparse matrix is only 
dependent on the number of cathode (vehicle component) nodes. Generally 
this is substantially smaller than the order, n, of the original system. The 
sparsity level is not uniformly high but, given the size of the resultant systems 
and the large number of time steps required, taking account of sparsity is well 
worth the effort. 

Timeline

Figure 1 shows an approximate timeline of the progression from initial 
development to full customer deployment. Almost from the beginning of 
development the testing and validation process began, getting progressively more 
complex as time passed.  

Figure 1. Timeline showing development of VPO™ EPD 

Testing and validation commenced with simple geometries because those are the 
ones that can be used for testing and experimenting in actual laboratory conditions, 
without impacting any manufacturing process. Simple laboratory experiments are the 
heart and key to the success of the VPO™ EPD simulator.  

For a given electrocoat, the parameters used in simulating the electrocoating 
process can be determined, tested, and verified against laboratory experiments 
applied to simple geometries. These parameters are then incorporated into the 
mathematical model that is the core of the VPO™ EPD simulator, which can then be 
used in simulations using more complex geometries. When the supplied electrocoat 
changes, the laboratory experiments are repeated and the simulator model adjusted 
accordingly. This is a crucial aspect because it means that the model does not have to 
be retooled when it is applied to real vehicles, or when new vehicle models are 
produced, or when the conditions in the electrocoat tank change for any reason. 
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The following figures show some of the test geometries and their progression in 
complexity. 

Mini-door 
The geometry shown in the picture is extremely simple and is designed to reflect 

some of the characteristics found in real vehicle 
parts. The area indicated by the arrow is of 
particular interest to the thin-surface approach used 
in VPO™ EPD because at this junction a number of 
surfaces meet and have to be treated in a 
mathematically correct manner, proprietary 
techniques for which have been developed by BSSI. 

Rocker panel 
The rocker panel can be considered to be among the most problematical vehicle 

parts when it comes to electrocoating. It is a 
complicated structure with many interior parts 
that combine to form inaccessible areas where it 
is difficult for the e-coat paint to reach. If this 

happens then, the likelihood of corrosion problems in later life increases dramatically 
and this is the main reason why the use of VPO™ EPD is so important – to identify 
strategies that will avoid this situation. 

Door Frame 
A door-frame is the lion of vehicle parts. It consists 

of the rocker panel plus the supporting pillars for 
the vehicle’s doors and wheels. It is a 
supremely majestic, complicated structure 
and the accurate modeling of electrocoating 
this vehicle part is a challenge, which when 
successful is immensely satisfying. 

Larger part 
The challenge to simulating a realistic operating 

environment not only comes from the size of the cathode – in 
this case a full vehicle frame – but also the tank and anodes in 
which the vehicle is transported. The tank shown in the 
picture is 35m long and contains 265 anodes, each one of 
which has to be meshed and placed in the correct position 
relative to the vehicle. 

An indication of the relative sizes between the different geometries mentioned 
above can be seen in Table 1 where the number of nodes and elements required to 
model each one using VPO™ EPD are displayed. 
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Table 1. Example problem sizes for various car parts 

Nodes Elements
Mini-door 2700 2758
Rocker panel 22906 21323
Door frame 34224 31163
Larger part 94156 86420

After running the gauntlet of complex geometry, and producing simulated 
parameter values to within limits set by the automotive company, the VPO™ EPD 
simulator can be applied in any vehicle program with confidence. Because of the 
underlying architecture employed, parallel processing using MPI, any vehicle 
geometry can be simulated within a time frame that is consistent with the automotive 
company’s operational requirements.  

Size and execution time are not the issues for discussion, rather the remainder of 
this paper addresses the challenges marked (A) and (B) in Figure 1. 

7 (A) Implementation 

The serial code mentioned in the timeline above began as a Fortran 77 prototype 
that was capable of running small geometries, such as flat plates and mini-doors. The 
code was developed on a 32-bit stand-alone PC using a commercial Fortran compiler 
[1].  

A separate activity to write a commercial standard code began, from scratch, in 
2003, and used Fortran 90 [2]. This move allowed a number of improvements, 
among which were: 

1. The use of allocatable arrays and linked lists to ensure that memory 
requirements were kept to a problem dependent minimum. 

2. The use of modules to encapsulate parts of the simulation, such as the 
simulation model. This allowed for easier changing of, and experimentation 
with, simulation models. 

3. The execution speed decreased by approximately 25%. 

The Fortran 90 serial code provided the basis for the commercial parallel code 
generated using MPI [3] together with associated numerical libraries such as 
ScaLAPACK [4].  

Hardware 
A requirement imposed by BSSI is that the parallel architecture used for 

simulations should, as far as possible, be composed from inexpensive, 
environmentally friendly, commodity hardware. In other words, if a cluster is to be 
used then consider one built from PCs that conform to this description. This 
requirement is not necessarily advocated by industry and in fact as later sections will 
show not adhering to the requirement imposes a hurdle to the vision for virtual paint 
operations that is the theme of this paper.  
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The initial implementation of the MPI version of the simulator used a 4-node, 32-
bit architecture comprised of Intel Celeron 2.4 GHz machines, each with 2 GB of 
memory and interconnected with a gigabit network. This provided a great test 
environment, for a total cost of less than $3000, and enabled experimentation on 
small to medium sized geometries.  

The major drawback with the 32-bit cluster was that it restricted the amount of 
memory available to 2 GB per processor. To accommodate larger memory 
requirements in a cost effective manner required the use of larger memory chips as 
well as an increase in the number of processors. This prompted a move to 64-bit 
architecture (to allow the addressing of larger amounts of memory) which in turn 
required a change of compiler technology from Lahey to PGI [15] since, at the time 
Lahey did not support full 64-bit addressing for individual arrays. The initial 
configuration for the 64-bit cluster was a 9-node cluster with each node comprising a 
64-bit AMD Athlon 3800 processor, rated at 2.4 GHz, each node of which has 3 GB 
of memory and, as before, the nodes are interconnected by a gigabit network. In 
2004, the total cost of this setup was less than $8,000 and has, until recently, been 
used to simulate the full range of vehicle geometries needed in operations at BSSI. 

Source code 
For ease of development, it was decided to have a single source code and to use 

fpp [5] to extract either the sequential or MPI versions of the software. 
The decision to use fpp appeared to have several advantages, for example, 

sharing the majority of the source code between the two versions would mean that, in 
many cases, a single edit would correct or update both versions of the software. In 
practice the disadvantages far outweighed the advantages. As the code developed the 
use of macros increased and it became difficult to update the source with confidence, 
indeed it was often necessary to extract both versions to check that changes made 
were as intended. More importantly, it was not possible to use software tools, like the 
NagWare suite [6], on the master version. These problems contributed to a general 
downward drift in both the readability and testability of the code until they were 
finally separated. 

MPI
The basic MPI framework is available from Argonne via the MPICH1 and 

MPICH2 implementations. Other implementations tend to be minor variations on the 
basic package and most of the time it is difficult to find out exactly what are the 
variations and what they might be useful for. Therefore, the starting point for our 
work was MPICH1 and then MPICH2. 

Our experiences with MPI, starting out as complete beginners, have been mixed. 
The MPICH2 [9] implementation is freely available and is first class. The final 
product is efficient and has been error free. Our only minor gripe is that the 
installation guide listed a number of configuration options which appeared not to be 
either implemented or working. However the advice and help we received via email 
was excellent and we soon had a working installation. 

We could have used far more assistance from support tools throughout the 
implementation and maintenance of the software. Debugging is an order of 
magnitude more difficult for a distributed code and a good profiler would have 
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enabled the early detection of inefficient parallel code and poor data distribution. As 
is to be expected a Google search for MPI support tools returns a large number of 
hits; what is required (and appears to be missing at the moment) is a definitive guide 
to which tools are (and are not) worth investing time and effort in. 

We found the mpiP lightweight profiling library [10] very useful once we had 
learnt how to interpret the information it presented; we were impressed with both the 
documentation and the best-efforts support that were on offer. For a debugger 
TotalView [11] looks good but it is commercial (we were looking for open source) 
and thus Jumpshot [12] looks potentially useful. 

There is also a problem with the migration to MPICH2. One of our industrial 
partners is staying with MPICH1; they have an efficient implementation and a large 
software base that still uses the earlier version. Despite the fact that MPICH2 
contains all of MPICH1 they will neither upgrade nor make both versions available. 

Compiler vendors have not, as yet, entered the specially tuned MPI installation 
market to any great degree. Few vendors offer pre-compiled versions of MPI itself 
and all that appears to be on offer are vanilla implementations with no special 
optimizations. 

ScaLAPACK 
In an MPI-based parallel environment, the standard package for solving dense 

linear systems using direct methods is ScaLAPACK, [4, 13], the parallel brother of 
LAPACK. Consequently, the ScaLAPACK routines dgetrf and dgetrs (see [4] for 
details) were used to implement step 3 in section 6 above. According to the 
ScaLAPACK manual [4] these routines for solving dense sets of linear equations 
work most effectively on a rectangular grid of processes with the data distributed 
using a block-cyclic distribution. Distributing by row slicing is likely to be 
inefficient and this is borne out by the execution times on a selection of test 
geometries. For example, the execution times obtained by solving the linear 
equations with n=7178 are given in Table 2. 

Table 2. Execution times for ScaLAPACK routines dgetrf and dgetrs for solving GY = H with 
n = 7178 

Grid Time (seconds) 
2  x  2 356 
4  x  1 626 
4  x  2 185 
8  x  1 341 

These timings clearly show the advantage of using a two dimensional grid even 
for a very small number of processes. The problem here is that a block cyclic 
distribution is sub-optimal for the parallel computation of the integral (step 2 in 
section 6 above). However, as the problem size grows the O(n3) complexity of the 
solution of the linear systems of equations dominates the computation and a move to 
a block cyclic distribution becomes far more appealing. 

ScaLAPACK represents a monumental software effort; essentially it provides all 
the functionality of Lapack in distributed form with MPI forming one of the 
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available base level communication libraries. We suspect that the manual [4], while 
comprehensive, is now somewhat out-of-date as concerns example hardware and 
advice on how to tune the routines to deliver maximum throughput; a maintained 
web based manual would be an advantage here.  

The downside of ScaLAPACK is that it is based on a number of layers that have 
remained unloved for the better part of a decade and the whole package requires 
considerable effort to install. The installation document is very old as are the 
Makefiles that are included (many for platforms that only now exist in museums). 
While some of the system dependent configuration settings can be obtained easily by 
running a number of small programs provided in the distribution, others are obscure. 
A mechanism that would allow successful installers to donate their makefiles and/or 
complete libraries would also be extremely helpful. Finally there is no easy way to 
extract and build a subset of the ScaLAPACK routines – for example, VPO™ EPD 
only wanted to call two top-level routines but the building of a call tree and the 
extraction of the routines in that tree was and is a non-trivial task. 

The learning curve for ScaLAPACK is quite steep. Solving some problems was 
certainly not helped by the opacity of some of the error messages. For example, 
when using P × 1 grid of processes to solve a general, square linear system of order 
n, it seems logical to set the size of the local blocks to mb = Pn / and nb to n (since 
each process will be holding all the columns). This results in an illegal value for nb
error; which could only be resolved by examining the source code where it was 
discovered that nb needs to be equal to mb.

Finally, there are a number of support routines that act in rather peculiar ways; 
for example, the subroutine INFOG2L which computes the starting local row and 
column indices and process row and column indices of a global element of a block-
cyclically distributed matrix. Put another way, if we wish to find the value of aij
calling INFOG2L with the values i and j will return k, l, r and c such that element aki
on the process in position (r,c) in the grid holds the required value. Now, it would 
appear safe to assume that, given i and j define a unique element, INFOG2L would 
return the same result on every process. However, this assumption is wrong because 
the routine requires the user to state which process is calling the routine so that it can 
return the wrong answer on all the processes except the one holding the element. It is 
not clear why this decision was made, especially as it is actually more efficient to 
compute the correct answer on all processes. 

Such quirky behaviour is strange but the problem does not end there. At least one 
other implementer, IBM [14], has included this routine in their parallel ESSL library 
and they even provide an example which shows how the wrong answer is computed 
by all processes except one; consistency at all costs? We need to take care not to 
spread such peculiar behaviours and this requires some form of active maintenance. 

Summary 
For those of us who experienced the heyday of numerical software development 

in the 70s and 80s, it is depressing to discover that many of the hard earned lessons 
from that era appear to have been forgotten. As an example: 

One of us (PG) was recently interviewed for over an hour by a very pleasant 
young man at Intel who turned out to be completely ignorant of the existence of NAG or 
IMSL, and who had never heard of the work on floating point arithmetic by Kahan and the 
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IFIP Working Group on Numerical Software, and who, needless to say, was blissfully 
unaware of the extent to which that legacy of work is today present in the very good Intel 
Math Library. 

In the world of cluster programming that level of ignorance appears to be very 
common and one feels cast adrift into a parallel world that seems to exist without any 
knowledge of, or influence from, the body of numerical software that existed before 
and after the BLAS; for this is the one piece of software that is peddled by the 
vendors as the general panacea for all one’s numerical problems. When it comes to 
implementing high quality mathematical software for a parallel environment using 
MPI, the current situation is woeful. The present state of the open source MPI 
implementations certainly require some tuning and perhaps this is to be expected – if 
an out-of-the-box solution is required then some would say that commercial software 
should be used instead of open-source. This might very well be the case except at 
this stage it is very difficult to determine the differences between the open-source 
versions of MPI and those available from commercial vendors, except the price. 

The exercise of constructing high quality mathematical software suitable and 
robust enough for commercial applications using open source / freely available 
software is possible but requires a great deal of effort and perseverance. The 
expenditure of this effort is tempered by the thought that many other users have, 
most likely, already trodden the same path and what a good idea it would be if such 
duplication of work could be avoided. It really is time that the developers of 
packages like ScaLAPACK. PBLAS, etc took a lead from the thriving open source 
community currently producing high quality software using the facilities provided 
by, for example, SourceForge. Here projects are kept alive and up-to-date either by 
the original authors or by other interested (and knowledgeable) parties rather than 
being allowed to languish unloved on the original authors web or ftp site. Sites like 
SourceForge provide a central, easy to find location where users can download the 
most recent version of the software, report bugs, donate Makefiles and ask questions; 
software improves by expanding the user community and gaining feedback. 

It is possible with determination, and a strong and encouraging champion of the 
software, to produce quality industrial strength software. Real vehicle parts, 
including full frame automobiles and trucks, are now straightforward to simulate 
using the parallel version of VPO™ EPD in an elapsed time that makes 
experimentation with different designs practical. The end result is a software product 
that enables significant reduction in costs, enhances good environmental practices, 
and improves the quality of the end product, namely the vehicles on the road. 

7 (B) Incorporating into production 

This section describes the most interesting aspect of this work because the value of 
the work depends on how successful it is to engage the workforce in using the new 
virtual toolset. If we fail in this regard then, it doesn’t really matter how clever we 
have been in solving complex simulation problems since end users will not use the 
tools, for one reason or another. And one lesson we have learned from many years of 
working with large corporations: it doesn’t always follow that it is the fault of the 
software that is the reason why users do not use it, for they have other influences that 
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may be more powerful than the ones you thought of in designing the software. Those 
influences boil down to one word: people. People in all levels of the organization 
will have and will always want a say, justified or not, in the use of the software – and 
that is the problem that has to be addressed and solved if the software is to be a 
success. People come and go but the software must remain for the good of the 
company. 

Skills - engagement

Complex manufacturing computational problems are rarely solved by the push of 
a button, and even if they were it would not be sensible to avoid human intervention 
at some point, if only to examine results and messages stemming from the 
computation. 

Currently, industrial operational environments rely heavily on people with hands-
on experience that it is crucial to utilize in the computer simulation of complex 
processes. This experience needs to be captured and used in order to augment 
decision making processes encoded in software.  

For computer simulations to be more effective than physical prototyping, 
software must be adapted to the existing skill base rather than the other way around: 

(a) Software should be designed to use the knowledge and experience of 
users, because the processes being simulated cannot normally be 
performed effectively without their input and guidance. 

(b) Users should feel comfortable in using the software – as far as possible the 
graphical controls, labels, and functions of user interfaces should reflect 
terminology and processes that are familiar to users from their working 
experience in the plant. 

(c) Users must have confidence in the software – this can only be gained over 
time and by comparing results from the virtual process with those from the 
actual events. 

(d) Generating what-if scenarios and experimenting to see the effects of 
different hypotheses will produce substantial quantities of output that 
needs to be analyzed, interpreted, and distilled into summaries for 
management to make the correct decisions. The existing workforce may 
be equipped to do these tasks but their job will be easier and more 
effective if the software contains tools to mine the data and extract trends 
and patterns. 

Only when all of these aspects are addressed successfully can the real benefits of 
virtual processing be obtained: a workforce that is engaged in the virtual process and 
that has the confidence to experiment with the software. Only then will they gain an 
understanding of what is possible and what will improve the end product and, in the 
process of achieving this, they will improve their own job satisfaction. 

The timeline in section 5 shows that this process for VPO™ EPD began in 2003 
and continues as the software evolves - real software continues to evolve as feedback 
and experience are gained from people. 
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The vision 

It has been our experience that even when the workforce is engaged and eager to 
work with software tools that give them more insight; very often the wherewithal to 
use the software is not at their disposal because of computer policies that inhibit the 
true use of computer technology. In this regard, the freedom experienced by the Grid 
community is definitely lacking in industry – in our opinion to its detriment. Putting 
this to one side then, the vision that BSSI sees for using virtual toolsets in 
manufacturing processes, not just painting processes, is one where 
employees are empowered to run tools like VPO™ at their own 
workplace rather than through a centralized computing facility. The 
work conducted by BSSI over the last 10+ years shows that with the 
advances in computer technology and the consequent drop in prices, it 
is no longer necessary to use large computing facilities to obtain the benefits from 
virtual simulations. However, if some find objection to this remark then we can 
qualify it by saying that the simulation of painting processes described in this paper 
can definitely be accomplished by inexpensive, environmentally friendly, personal
workstation clusters. All of the tools in VPO™ run on this type of cluster. 

Personal clusters can have far reaching consequences for an industry fully 
committed to reducing costs by using computational simulation wherever 
appropriate. One obvious consequence is that a workforce equipped with personal 
clusters is much more likely to collaborate especially when the virtual tools are 
naturally interrelated as they are in VPO™. 
Successful collaboration is optimal for the 
company and therefore, the next stage of 
VPO™ that is already underway is the 
distributed environment shown in the picture 
where each personal cluster uses a 
combination of message passing and shared 
memory parallel processing. 
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Q&A – Patrick Gaffney, Tim Hopkins 

Questioner: Ian Reid 
Are you using ACML for LAPACK / ScaLAPACK? If not, you should since it 
will almost certainly be the fastest for AMD processors. It is freely available 
from the AMD Website and is developed / supported by AMD & NAG. 

Tim Hopkins: 
Not at the moment. We looked at the download site several months ago and 
it appeared that Scalapack was no longer supported as it was listed only 
under their archive section. Given your comments we will look into this again. 

Questioner: Boyana Norris 
(a) Is the linear system sparse or dense? 
(b) Why did you decide to use ScaLAPACK? 

Pat Gaffney: 
The linear systems are not sparse they are full matrices.  

The first implementation of the system uses direct methods and therefore the 
MPI version is implemented using ScaLAPACK.  

Another version of the system uses an acceleration technique, the Fast 
Spectral method that we have developed and that uses sparse techniques: 
the coefficient matrix is never assembled, and an iterative solver is required. 
This reduces the memory requirements significantly. 

Questioner: Bill Applebe 
Could commercial codes not have been used? 

Tim Hopkins: 
Certainly for the numerical computation there wasn’t any software 
commercial or otherwise that implemented the methods we are using. 

Pat Gaffney: 
It is always possible to cobble together existing codes but that would not be 
as effective as the approach we have taken with VPO. Our customer tried for 
many years to use just such an approach and found it difficult to obtain 
necessary functional changes and support from the “one-size-fits-all” 
commercial code suppliers. For one thing, VPO has a uniform interface 
where all the VPO modules are accessible in one place. This was an 
important feature for the end customer and not one shared by disjoint 
systems. 



However, by far the most important advantage of the VPO approach is that 
all of the modules: electrocoating, baking, drainage, voids, vibration, and 
future spray models, use the same computational grid, which is a definite 
advantage to the end-customer who already has a plethora of grids to 
contend with. Minimizing the number of grids by solving a range of problems 
using one grid is a distinct advantage and one offered by BSSI’s VPO. 

Questioner: Brian Smith 
How do you test the software and how do you validate that the simulations 
are valid? What role does the customer play in the testing and validation 
process for the software? 

Pat Gaffney: 
The end customer has a rigorous sequence of procedures that must be 
followed before any software is accepted for operations. In the VPO work, 
testing is a continuous process involving both the end-customer and BSSI 
working closely together. 

Comment: Ian Reid 
On debuggers, you might like to look at DDT from Allinea as a cheaper 
alternative to Totalview. 

Tim Hopkins: 
Thanks for the information. Looking on their Web site they are also offering 
an optimization and profiling tool specifically for MPI applications. We will be 
evaluating these in the near future. 

Questioner: Ron Boisvert 
You painted a somewhat discouraging picture of the state of existing math 
software components that you are using to build your system. Given that 
such software is the underlying engine for technical applications, do you think 
that component-based grid systems and service oriented computing is 
realizable in the near term? 

Tim Hopkins:  
I’m sure that it is realizable in the near term in as much as people will be able 
to access the same low quality software they are currently familiar with via 
grid systems. What we are not hearing is how suppliers of grid systems 
intend to ensure that their users only have access to high quality, reliable and 
robust software. Perhaps this is a golden opportunity to impose quality on 
end users! 



Service-oriented Computation in Magnetic

Fusion Research

David Schissel
General Atomics

Abstract. Fusion science seeks a new power source and is
advanced by experiments on fusion devices located worldwide.
Fundamental to increasing understanding of fusion is the comparison
of theory and experiment; measurements from fusion devices are
analyzed and compared with the output of simulations to test the
validity of fusion models and to uncover new physical properties.
Integrating simulations with experimental data (or with other
simulations) is in many cases a labor-intensive task as different codes
use different data storage formats. Moreover, the timely comparison
of simulation with observations made during an experiment requires
rapid turnaround both of analysis codes and simulation runs. Many
simulations require extensive input and output processing, further
increasing the amount of work necessary to achieve viable scientific
results. Workers with the National Fusion Collaboratory are
developing, deploying, and evaluating new technologies that facilitate
analysis of experimental data and comparison with the results with
those of simulations. Complex physics codes are made available on
the National Fusion Grid (FusionGrid) as comprehensive
computational services. Using the Globus Toolkit", a service-based
approach was developed and subsequently combined with the
TRANSP transport code to the benefit of fusion scientists. Output
from both simulation and experimental codes are stored in MDSplus,
the de facto standard for secure data storage of fusion data. Access
control for the resources of FusionGrid is greatly simplified_for both
users and administrators_through unified authentication and
authorization using X.509, a grid-wide certificate management
system, and a grid-wide authorization system. Web-based solutions
such as the recently developed Elfresco reflectometry code further
simplify the process by making simulations available to scientists and
providing an alternative to traditional distribution of code. Future
work includes the development of parallelized modules to speed up
long-running codes along with the extension of MDSplus. These



improvements will help accommodate the continuous data streams
that will be found in future fusion devices such as ITER. This paper
will present a discussion on specific solutions, examine deployment
areas that present a challenge, and highlight areas where further work
is required.
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Q&A – David Schissel 

Questioner: David Walker 
Could you comment on the similarities and dissimilarities between how the 
fusion community is using the grid and how the HEP community is using it; 
e.g. for analyzing LHC data? 

David Schissel 
The HEP/LHC community is using grid technology to move huge quantities of 
data to Tier sites for analysis that occurs after the experiment. For the 
experimental fusion community the quantity of data is not nearly as large. 
Thus, our usage of the grid is for more interactive work with data as well as 
providing computational services. Recent discussions between the fusion 
and HEP communities have identified areas of commonality between what 
FusionGrid has accomplished and what is needed by HEP to monitor (not 
analyze), in real-time ongoing experiments. The communities are examining 
ways to work together for their mutual benefit. It should be noted that both 
communities are using the grid for human communication with Access Grid 
and VRVS/EVO technology. 

Questioner: Brian Smith 
What is the current reliability levels (of network, computation, experimental 
/fusion systems)? 

David Schissel 
Network connectivity for fusion research in the United States is provided by 
ESnet with a reliability (this is from my memory) of somewhere between 
three and five 9’s. The complex Tokamak systems that include power 
supplies, heating systems, diagnostics and computers are less reliable than 
ESnet but this is due to the lack of redundant systems whose cost would be 
prohibitive. 

Questioner: William Gropp 
You said a goal was to create a “standard toolset.” What does standard 
mean here? Follow-up: How did you achieve your community standards? 

David Schissel 
Within the experimental fusion community there is a history of sharing 
computer codes rather than each individual institution solving the same 
problem. Most likely the best example of this is the MDSplus data acquisition 
and management system. My statements regarding a standard toolset were 
made within this context and were not meant to imply that a standards body 
would be created for a formal declaration. Our community’s standards are 
created informally but good communication between the major organizations 



is critical. The history of communication and sharing within our community 
makes this a rather straightforward exercise.  

Questioner: Ronald Boisvert 
You explained that security/authentication issues remain a challenge to 
scaling your system to larger number of users. Are there other middleware 
type systems that are causing similar problems for you? What are the critical 
systems and services that need improvements for builders of grids systems 
to use? 

David Schissel 
Security issues are by far on the top of our list. Another item we are still 
working towards is a solution for federated web portals that are relatively 
easy for scientific users to interact with and to add services to. The other 
issue that has been a problem for us is network multicast. Although ESnet 
supports this we find that many local LANs do not. 

Comment: Mary Thomas 
It is difficult to get Fusion Security people to open port 80 for portals. 

Questioner: William Gropp 
Security may require more than single authentication (single point of failure). 
Would your users accept 2 logins or more? At what point do they throw up 
their hands? Follow-up: A service model that does not require accounts may 
provide an alternative solution. Would this be a feasible approach? 

David Schissel 
We always ask the question: what do users gain for what they give up. So 
the answer to your question, would they accept 2 logins or more, really 
depends on what they gain. If they perceive the gain to be small they would 
not be accepting of multiple logins. Our goal in FusionGrid is a onetime login 
for all of our services. 

Questioner: Dennis Gannon 
Can DOE learn from TeraGrid on the security issue? 

David Schissel 
The FusionGrid project has continued to reach out to other projects and other 
grids to learn and to make progress. Our adoption of MyProxy in the middle 
of our project I think is a good example of this. So the short answer to your 
question is yes. The longer answer is that the security requirements dictated 
by different government bodies (e.g. NSF vs. DOE) can change solutions 
from one grid to another and so the applicability of particular solutions may 
vary. 
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Abstract. The Grid-Enabled Computational Electromagnetics project 
(GECEM) has developed a portal for performing electromagnetics simulations. 
The portal is based on the GridSphere portal framework and uses JSR168-
compliant portlets to access remote web services. The GECEM portal supports 
an execution pipeline that starts with an input geometry which is processed to 
generate surface and volume computational meshes, which in turn are input to 
a computational electromagnetics (CEM) simulation. The CEM simulation 
produces the final output file which consists of a vector of values at each mesh 
point. A distributed collaborative visualization tool has been integrated into the 
portal to view the CEM simulation results. This paper discusses how the 
GECEM portal can be extended into a more general portal for a certain class 
of scientific computation. A model of a scientific portal will be presented in 
which abstract workflows are built out of workflow patterns. The resulting 
workflows are then embedded into the portal for use by end-users. A 
virtualized data store may be used to support checkpointing and archiving. 

1 Introduction 

This paper describes the Grid-Enabled Computational Electromagnetics (GECEM) 
project, and discusses its main research outcomes and the lessons learned from the 
project. In particular, a model is proposed for the composition and use of distributed 
service-based applications that addresses the perceived and stated needs of scientific 
end-users who have little or no expertise in portals and service-oriented 
infrastructure.  



The GECEM project was funded mainly by the UK’s Department of Trade and 
Industry as part of its contribution to the e-Science Core Programme1, with 
additional contributions coming from the project’s industrial partners, BAE 
SYSTEMS and Hewlett-Packard ([1]-[3]). The other collaborating partners were 
Cardiff University, the University of Wales Swansea, the Welsh e-Science Centre, 
and the Singapore Institute of High Performance Computing. The project was 
completed at the end of 2005, and ran for 27 months. Further details may be found in 
the project final report2.

The overarching objective of the GECEM project was to apply Grid technologies 
to enable large-scale scientific and engineering research across a globally-distributed 
extended enterprise in which the partners only partially trust each other. Subsidiary 
project objectives included the exploration of secure code sharing and computation 
capability; the grid-enablement of legacy codes by exposing them as web services; 
and, the development of a GECEM portal as an integrated user interface to the 
underlying GECEM services and tools. Computational electromagnetics was chosen 
as the target application area because of the particular interests and expertise of the 
project partners, however, the same approach and techniques used in the GECEM 
project could be applied equally well to other areas, such as computational fluid 
dynamics and structural mechanics. 

The remainder of this paper is arranged as follows. Section 2 presents an 
overview of the GECEM application and the Grid infrastructure on which it runs. In 
Section 3, issues relating to trust and security in the GECEM project are discussed, 
and the GECEM portal is described in detail in Section 4. In Section 5 the lessons 
learned from the GECEM project are enumerated, and a model of a scientific portal 
is presented in which abstract workflows are built out of workflow patterns that can 
then be embedded into the portal for use by end-users. Related work is discussed in 
Section 6. Ideas for future work and a summary of the main points of the paper are 
presented in Section 7. 

2   GECEM Grid and Application 

The GECEM application can be viewed as a workflow, or execution pipeline, with 
four main stages (see Fig. 1): 

1. Creation of the surface mesh from a specification of the geometry of the object 
to be modelled. This takes as input a file describing the geometry of the 
problem, typically generated by a CAD system, and outputs a file describing 
the resultant surface mesh. 

2. Creation of the volume mesh based on the surface mesh file generated in step 
1. This outputs a file containing the volume mesh. 

3. Solution of the computational electromagnetics (CEM) simulation. This takes 
as input the surface and volume mesh files generated in steps 1 and 2, and 
outputs a file representing the solution. 

4. Perform collaborative visualization of the output file.  

1 http://www.epsrc.ac.uk/ResearchFunding/Programmes/e-Science/default.htm 
2 http://www.wesc.ac.uk/projectsite/gecem/doc/GECEM%20Final%20Report.pdf
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Fig. 1. The GECEM execution pipeline. 

In addition to the main dataflows represented by arrows in Fig. 1, each stage in 
the workflow takes a small number of additional control inputs stored in files. In the 
GECEM project the objects to be modelled are typically quite complex, such as 
aircraft and ships. 

The first three stages in the workflow perform the three main numerical tasks – 
the input geometry is converted into surface and volume meshes which are then used 
to carry out the CEM simulation. Each of these stages is performed by a separate 
executable legacy code written in Fortran. This code is called from a C wrapper 
which in turn is wrapped as a Java program using the Java Native Interface (JNI). 
This is then deployed as a service within an Apache Tomcat container. 

A demonstration based on the Globus Toolkit 2, showing the transfer of files 
between the different stages in the GECEM workflow and the execution of the 
GECEM services, was given at the UK e-Science All Hands Meeting in September 
2003. This showed the basic functionality of the GECEM virtual organisation, and 
was subsequently developed into the GECEM portal, discussed in Section 4, based 
on the Globus Toolkit 3.2. The collaborative visualization capability, which is shown 
as the final stage of the GECEM workflow in Fig. 1, was added in the last few 
months of the project. This uses the Resource-Aware Visualization Environment 
(RAVE) which is an infrastructure based on web services for supporting 
collaborative visualization in a distributed environment. 

The first two stages of the GECEM pipeline are performed by the Surface Mesh 
Generation Service and the Volume Mesh Generation Service, the executable code 
for which resides permanently on particular hosts. However the CEM simulation step 
of the pipeline is performed under the control of the CEM Migration Service. 
Invocation of the CEM Migration Service causes the CEM executable to be migrated 
to a selected target machine, together with the user-specified input files. The code 
then executes, its output is sent to a user-specified location, and the code on the 
target machine is then deleted, along with any associated datasets. The CEM 
Migration Service is discussed further in Section 3. 

Grid infrastructure compatible with the Open Grid Services Architecture (OGSA) 
was used to establish a virtual organization across the project participants. This 
infrastructure provided for the authorization and authentication of users, the 
exchange of data files between sites, and the remote execution of applications. In the 
GECEM Grid the services for surface and volume mesh generation and CEM 
migration were located on machines at the University of Wales Swansea (UWS). The 
services for supporting collaborative visualization using RAVE were hosted at the 
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Welsh e-Science Centre (WeSC). The CEM Migration Service offered a choice for 
migrating the simulation code from UWS either to a machine at Cardiff University, 
or to a machine at the Singapore Institute of High Performance Computing (IHPC). 

 A typical use case of the GECEM Grid is shown in Fig. 2 in which a geometry 
file created by designers at BAE SYSTEMS is input to the mesh generation services 
at UWS. The resulting surface and volume meshes are then passed to the CEM 
Migration Service (also at UWS) which migrates the executable code and input files 
to a machine at WeSC. After the CEM simulation code has executed at WeSC the 
results are then examined in a collaborative visualization session. 

Fig. 2. Typical use case for the GECEM Grid. The dashed arrows emanating from the RAVE 
system represent the collaborative visualization of the CEM simulation output.  

3   Trust and Security in the GECEM Grid 

The GECEM Grid represents a type of extended enterprise in which the partners only 
partially trust each other, which places constraints on how resources are shared. For 
example, designers at BAE SYSTEMS may be prepared to share geometry files but 
not the software systems that create these files. UWS may allow authorized users to 
access their codes as web services, but may not want to permit users to logon to their 
machines to execute the codes directly from the command line. Similarly, the owners 
of the high performance machines at WeSC and IHPC may not wish to permanently 
host the CEM simulation code, but may allow it to reside on their machines on a 
short-term basis. In many extended enterprises it is this type of partial trust that 
mandates a distributed solution, since if there were complete trust between all 
partners all the software and data could be placed at a single location. 
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Authentication of users of the GECEM Grid is based on e-Science certificates. 
These are X.509 certificates issued by the UK e-Science certificate authority. Since 
the services accessed through the GECEM portal are based on GT3.2, the portal 
makes use of the Grid Security Infrastructure (GSI) for the authentication of users, 
services, and resources3. GSI also provides for “single sign-on” to Grid resources and 
the delegation of credentials. Single sign-on refers to the ability of a user to perform 
a single action of authentication (such as entering a password) to access the 
distributed resources that he or she is authorized to use. Delegation is a mechanism 
whereby a user or service can delegate a subset of their access rights to another 
service.

The GECEM portal uses the MyProxy online credential repository [4] managed 
by the Grid Operations Support Centre of the UK e-Science programme4. The 
MyProxy Upload Tool, developed in the CCLRC DataPortal project, is used to 
upload a user's proxy credentials to the MyProxy repository. The user can choose 
how long they wish their credentials to be kept in the repository and how long any 
proxies generated are valid. The user also needs to choose a username and MyProxy 
pass phrase, which is subsequently used to log into the portal, effectively giving 
single sign-on access to the GECEM resources. GridFTP is used to perform secure 
file transfers between sites in the GECEM Grid. 

The GECEM project explored the concept of the secure migration of applications 
in which an executable code is securely migrated to a remote computer, its execution 
is initiated and its progress monitored, and then it is deleted on completion, returning 
the output to the user. The intent is to leave no permanent trace of the application 
executable or its input and output files on the machine where the application is 
executed, and to ensure that no third parties (including system administrators) can 
access or interfere with the application or files during the migrate/execute/return 
cycle. Current computer architectures and operating systems allow system 
administrators complete control over the operating system kernel. Hence the system 
administrator can spy on and interfere with any application. Researchers in the area 
of secure remote execution are investigating the concept of “platform virtualization” 
in which a Virtual Machine Monitor (VMM) runs at the lowest level of the software 
architecture, below the operating system kernel, thereby preventing the operating 
system from having direct access to the machine hardware [5]. Virtualization allows 
the same compute hardware to run multiple operating systems simultaneously, with 
the VMM providing each operating system with an abstraction of the real machine 
hardware called a Virtual Machine (VM). The VMM ensures that each operating 
system running on top of a VM is kept separate, and acts as a control point restricting 
what an operating system can do with the hardware resources of the system. Thus, if 
a “guest” application is run atop its own VM it will be secure from other general 
users and from the administrators of any other operating systems running on the 
system. Some future chipsets will provide support for virtualization and hardware 
physical protection facilities that will allow the secure migration and remote 
execution of applications. 

3 http://www.globus.org/security/  
4 http://www.grid-support.ac.uk/  

Grid-Based Problem Solving Environments            99



In the case of the Surface Mesh Generation Service and Volume Mesh 
Generation Service the executable code resides permanently on particular hosts. 
However, the CEM Migration Service differs in that it causes the executable code to 
be securely migrated to a selected target machine, together with any necessary input 
data sets. The code then executes, its output is sent to a user-specified location, and 
the code on the target machine is then deleted, along with any related data sets.  This 
behaviour has many of the features required for the secure migration and remote 
execution of an application. However, the application code and files are vulnerable 
while on the remote computer – in fact, as noted above, it is currently impossible to 
ensure completely secure remote execution (or, indeed, secure local execution). 
However, the CEM Migration Service does reduce exposure to risk in remote 
application execution. 

4   The GECEM Portal 

The GECEM portal is a problem-solving environment (PSE) composed of a 
collection of JSR168-compliant portlets and services for mesh generation and CEM 
simulation.  A portlet is a pluggable user interface component used with the context 
of a portal framework. From a user’s point of view a portlet is a window in a portal 
that provides a specific service or function. A portlet processes requests and 
generates dynamic content, and the content of multiple portlets are typically 
aggregated together to form a portal web page. A portlet’s life cycle is managed by a 
portlet container. Portlet standards, such as JSR-168 and Web Services for Remote 
Portlets (WSRP), are helping to make portlet-based portals the most common way of 
presenting aggregated web content to consumers [6]. 

The GECEM portal provides the main interface through which services are 
accessed. The portal supports the composition of applications from service-based 
components, the execution and monitoring of such applications on remote resources, 
and collaborative visualization, exploration, and analysis of the application results.  
In addition, the portal also provides an interface to meshing services and supports the 
collaborative visualization of meshes. 

Two key decisions on the design of the portal were made early in the project. The 
first was to use the publicly-available open-source GridSphere5 portal framework as 
the container of the GECEM portal. The second design decision was to base the 
GECEM services on Globus Toolkit 3.2, as this was the most recent version of the 
toolkit available early in the project. GT4 was not available until close to the end of 
the project, and it was decided not to migrate the services to this version of the 
toolkit. As discussed in Section 2, the GECEM services are simply wrapped legacy 
executables. 

GridSphere 2.0.4 was used in the GECEM portal [7], together with GridPortlets 
1.1 [8]. GridSphere was deployed in the Tomcat 5.0.30 servlet container. The 
GECEM portal has a three-tier architecture, as shown in Fig. 3. The GridPortlets are 
a set of portlets, developed by the same research team that developed GridSphere, 

5 http://www.gridsphere.org/  
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and are used for tasks such as credential management, resource browsing, file 
browsing, and file transfer. 

The GECEM portlets in Fig.3 allow a user to set up a job as a sequence of one or 
more stages in the GECEM pipeline (see Fig. 1), with specified input and output 
files. Prior to each stage portlets are used to select the input files to be used, and the 
directory in which to store output files. These files and directories may be on any of 
the machines that are members of the GECEM virtual organisation. Services are 
discovered dynamically using a UDDI server at WeSC, and where multiple 
equivalent services are available for a particular task, perhaps employing different 
algorithms or numerical methods, the user can select from these. Service discovery 
and invocation are also controlled through GECEM portlets. 

The Resource-Aware Visualization Environment6 (RAVE) was used to provide a 
collaborative visualization capability within the GECEM portal. RAVE is a 
collaborative visualization environment that scales across visualization platforms, 
ranging from large immersive devices all the way down to hand-held PDAs [9, 10]. 
RAVE is based on web service technologies, and provides for distributed rendering 
on remote machines. The data to be rendered may reside on one machine, the 
rendering may be done on one or more other machines, and the rendered image may 
be displayed on yet another machine. In the RAVE architecture a Data Service is 
used to store and distribute the data sets to be rendered. A machine with enough 
power to render the data may use an Active Client, which reads directly from the 
Data Service and renders locally. Smaller machines, such as a laptop or PDA may 
use a Thin Client, which reads rendered frame buffers from an intermediate Render 
Service hosted on a more powerful machine. Active and Thin clients can join a 
single visualization session, enabling collaboration between users on vastly differing 
resources. 

A RAVE Portlet was developed and integrated into the GECEM portal. The 
RAVE Portlet first presents the user with a list of Data Services of choose from. 
These are discovered dynamically using a UDDI service. The user next initiates a 
collaborative visualization session, which users at other locations can also join, and 
then selects a data set to render. Next a Render Service is selected to carry out the 
rendering – this is selected from a list populated from a UDDI registry. The final step 
is to indicate whether the local client is an active or thin client – in the former case 
any render service selected in the previous step is ignored and the data set is rendered 
on the local client. The data set will then be rendered in the GECEM portal on the 
local client and on any other machines that have joined the collaborative session. 
Users can then navigate, and interact with, the data set. Two main modes of 
collaborative visualization are supported: 

1. Each user independently explores the same data set. 
2. One user acts as “leader” and all other users view the data set from the same 

location as the leader. 
Users are represented graphically in the visualization by an avatar, which can be 

seen by other users in the collaborative session. 

6 http://www.wesc.ac.uk/projectsite/rave/  
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Before visualization the output produced by the CEM simulation must be 
converted to a form that can be handled by RAVE. This is done within the CEM 
Migration Portlet of the GECEM portal before accessing the RAVE Portlet. 

The addition of audio communication between collaborating users was 
considered, but it was decided that the recent advent of Voice over IP (VoIP) 
services, such as SKYPE7, made it unnecessary to develop a custom solution. 

Fig. 3. Three-tier architecture of the GECEM portal. 

5   Lessons Learned 

The lessons learned from the GECEM project can be divided into two types: 
technical and non-technical. The non-technical lessons are quite generic and are 
mainly concerned with the management and conduct of projects with several partners 
in which there are interdependencies in the software development process and 
reliance on third-party software. In such cases it is important to avoid single points of 
failure whereby a particular problem can bring the whole project to a halt. Exposure 
to risk can be reduced by planning alternative strategies to follow if difficulties arise. 

On the technical side, portals were found to be effective in providing a high-level 
interface for scientific users that shields them from the complexities of using 
distributed resources via the Grid. Portlets make it easy to integrate heterogeneous 
resources within a unified interface that can be accessed from any Web browser. 

7 http://www.skype.com/ 
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The model of a distributed application model embodied in the GECEM portal 
consists of a linear workflow structure with a fixed number of nodes. Each node is a 
placeholder for a particular type of activity which is implemented by a service. Thus, 
there is a placeholder for surface meshing, a placeholder for volume meshing, and so 
on. It is the responsibility of the portal user to associate an actual service instance 
with each placeholder node in the workflow by making a selection from the services 
discovered by the UDDI portlet. The static nature of the workflow in the GECEM 
portal was found to be too restrictive by some of the portal’s users who expressed an 
interest in dynamically composing service-based applications. However, even 
limited changes, such as adding another placeholder node to the linear workflow, 
require the portal to be reconfigured and new portlets to be developed by hand. This 
requires a degree of expertise beyond that of most end-users – indeed, it should be 
the aim of the portal developer that it be easily usable by those with no expertise in 
portal technologies. The challenge, therefore, is to support some degree of 
application composition by typical scientific end-users in a portal built out of 
portlets. There are numerous tools for composing service-based applications – 
examples include Triana [11], Kepler [12], and Taverna [13]. However, these are all 
stand-alone systems that may be difficult to embed within a portal, and that would 
perhaps provide more features than many end-users require. Furthermore, 
incorporating such composition tools would introduce unnecessary software 
dependencies into the portal. A better approach is to perform the workflow 
composition tasks external to the portal as this ensures a clear separation of form (the 
structure of the workflow) from content (the actual service instances and inputs 
used), and allows a number of third-party workflow composition tools to be used to 
create the initial workflow structure. 

The approach to workflow composition advocated here is to use a tool that can 
design workflow structures out of simple workflow patterns [14, 15]. Once the 
desired workflow structure has been created, it would then be processed to create a 
new portal with the workflow embedded in it. As in the original GECEM portal, 
each node in the workflow would be a placeholder with which the user must 
associate a service instance, and inputs and outputs of the workflow would be files to 
be identified by the user. As an example, consider the workflow patterns on the left-
hand side of Fig. 4. Pattern A, having just one input and one output, can be used to 
construct linear workflow structures similar to that illustrated in Fig. 1. Pattern B has 
two inputs and one output and can be used to construct a much more general class of 
binary tree structures, as shown on the right-hand side of Fig.4. 

Pattern A 

Pattern B 
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Fig. 4. The right-hand side of the figure shows a workflow structure that can be created from 
the two workflow patterns on the left of the figure. 

The workflow structure on the right-hand side of Fig. 4 has five inputs and one 
output. Pattern B is a simple merge pattern; one could also consider a split pattern in 
which a node has one input and two outputs. Indeed, a tool that allows the user to 
specify the number of inputs and outputs of a node would provide for all the above 
patterns, and support the design of a large class of data-driven graph-structured 
workflows. Such abstract workflow structures can be expressed in almost any of the 
existing workflow description languages. 

If services are virtualized and discovered within the portal from a service registry 
such as UDDI, then there has to be a mechanism for the portal to determine which 
service implementations match a given placeholder node in a workflow structure. 
This problem of matching concrete service instances to abstract service 
specifications is currently a topic of much research (see, for example, [16-18]). The 
simplest approach is to use a service name to perform the matching, but this works 
only if all service providers agree to use the same naming scheme. Other approaches 
make use of metadata and/or ontologies to allow independently-developed services 
to be discovered and matched to placeholder nodes. Rather than use the metadata and 
ontology approaches to service matching in end-user tools, it is probably more 
effective to assume that in the future “spiders” will examine the contents of multiple 
resource registries, and use the metadata published therein to classify and name 
services in order to produce meta-registries of services [19]. In a meta-registry all 
equivalent services will be given the same unique service type which acts as a global 
name. It is then necessary to distinguish between the local name a service is given in 
a service registry and the global name it is given in the meta-registry. If a user 
associates a local name with a placeholder node then the portal would be able to 
discover all the services with the same type in the meta-registry. These services 
would then be offered to the portal user who would then select one of them, thereby 
associating a concrete service instance with the placeholder node. Alternatively the 
user might browse the meta-registry to find an appropriate service to use. 

In the original GECEM portal services are virtualized, but the files that act as 
input and output to the GECEM services are not. As discussed in Section 7, it would 
be useful to provide a virtualized file store from which to select input files in the 
portal. There is then a problem of deciding which files in the virtualized file store are 
compatible with the inputs of a particular service. The simplest solution is to identify 
different types of files by a unique file type, and to associate each input and output 
file of a service with one of these types. As in the problem of matching abstract and 
concrete services, it is possible to make use of metadata descriptions of files and 
service inputs/outputs to determine which files are compatible with a particular 
service input or output. Once again it is possible to use this metadata to associate a 
unique file type with each service input/output, and to perform this association 
independently of the workflow design tool proposed here. Thus, it can be assumed 
that in an abstract workflow it is possible to refer to services by unique service types 
and to its inputs and outputs by unique file types. 
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Once a workflow structure has been created, unique service types must be 
associated with each placeholder node. After this step the unique file type of each 
nodes inputs and outputs can be determined. Henceforth, the association of unique 
service and file types with placeholder nodes will be referred to as labeling the 
workflow. The final step is to embed the labeled workflow into the portal – this will 
be referred to as compiling the workflow. It should be noted that compiling a 
workflow does not bind abstract services to specific service instances - this is what 
the end-user does within the portal. Compiling a workflow automatically generates 
the portlets corresponding to each node in the labeled workflow. These portlets will 
be used by the end-user in the portal to specify the specific services to be used (thus, 
the portlets support discovery and binding). Compiling also configures the portal so  
these portlets are visible to the user within the portal. The compilation step can also 
ensure that the workflow is consistently labeled by checking that the unique file type 
of each node output is the same as that of the node input to which it is connected. 

Functionally the design, labeling, and compilation of a workflow, together with 
the use of the portal itself, are independent tasks that could be performed by distinct 
tools and interfaces. However, there are a number of ways in which these functions 
could be combined. For example, the design, labeling, and compilation tasks could 
be merged into a single tool. In this paper it is assumed that each of these tasks is 
performed by a separate tool, as shown in Fig. 5. Thus, if the labeling tool accepts as 
input workflow structures described in a subset of BPEL, this allows existing tools to 
be used to design the workflow. 

Fig. 5. The relationship between the design, labeling and compilation tools, and the 
portal. Also shown are some of the functions of the portal. 
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6   Related Work 

The GridSphere portal framework is used across a range of scientific disciplines to 
create portlet-based portal interfaces8. For example, the e-Physics portal developed 
by researchers at The University of Melbourne has been used to perform parameter 
sweep studies for a magneto-hydrodynamics astrophysics code, ZeusMP [20]. Unlike 
the GECEM portal, where the user is responsible for selecting between semantically 
equivalent services, in the e-Physics portal resource selection is usually done 
automatically by the Gridbus Broker [21]. This difference arises from the distinct 
modes of use for which the GECEM and e-Physics portals were designed. The 
GeneGrid portal [22] is another example of a scientific portal based on GridSphere, 
and provides access to a virtual bioinformatics laboratory that allows users to 
construct experiments by either composing new workflows or reusing workflows 
created previously. The Astrophysics Simulation Collaboratory [23] uses the 
GridSphere portal framework to manage numerical relativity simulations based on 
the Cactus Computational Toolkit [24].   

The portals mentioned in the previous paragraph all provide end-user interfaces 
for particular application domains. The P-GRADE portal supports the composition 
and execution of workflows, and is not tied to any specific application domain [25]. 
The P-GRADE portal is similar in some respects to the GECEM portal: both portals 
are based on GridSphere, both represent the input/output of data to/from a workflow 
node in terms of files, and both make use of certificates, GSI, and MyProxy servers 
in the authorization and authentication of users and resources. The P-GRADE portal 
provides a workflow editor that may be used to create new workflows and edit 
existing ones. For each node in a P-GRADE workflow the end-user must specify the 
client-side location of the binary executable, and its type (sequential, parallel MPI, or 
parallel PVM). The end-user must also select the resource that the executable is to 
run on by first choosing the particular Grid to be used and then the resource on that 
Grid. These choices are made using dropdown listboxes that are configured by the 
portal administrator. The P-GRADE portal user must also specify the location of the 
workflow’s input and output files. Thus, the P-GRADE portal differs from the 
GECEM portal in that the former does not provide access to virtualized services and 
files. In addition, the distinction between abstract and concrete workflows, discussed 
in Section 5, is not clearly made in the P-GRADE portal approach. Another 
distinction is that the P-GRADE portal uses the DAGMan workflow scheduler [26] 
to perform file transfers required to execute the workflow, and for the submission of 
jobs (representing workflow nodes) to Grid resources, whereas the GECEM portal 
handles these tasks directly by itself. 

The concept of an abstract workflow underpins the Griphyn Virtual Data System 
(VDS; formerly known as Chimera) and its portal interface, Chiron [27]. Virtual data 
is stored in a Virtual Data Catalog (VDC), and is represented and queried by an 
XML-based Virtual Data Language (VDL). When queried for a data product, the 
VDC generates an abstract workflow for creating that data. This abstract workflow 
can then be used to generate a concrete workflow by mapping requests for data and 
computation onto actual resources – a process often referred to as “planning”. The 

8 See http://www.gridsphere.org/gridsphere/gridsphere?cid=projects 
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Chiron portal uses the Pegasus planner [28] to generate a concrete workflow, which 
is then submitted to DAGMan for execution on the Grid. The Pegasus planner uses a 
Transformation Catalog to map the logical names of transformations (called a 
“service type” in Section 5) to physical resources and executable locations, and the 
Metadata Catalog Service and Replica Location Service for data publication and 
discovery. Pegasus can also be used independently through its own portal for 
workflow submission and management. 

The Grid Execution Management for Legacy Code Architecture (GEMLCA) 
provides an easy way to expose legacy application binary codes as OGSA-
compatible services [29]. In GECEM this was done by wrapping the original source 
code, but in GEMLCA a front-end Grid service layer handles parameter passing and 
contacts a Globus Master Managed Job Factory Service (MMJFS) to submit the 
legacy application for execution. GEMLCA has been integrated with the P-GRADE 
portal so that legacy codes and other service components can be used to create 
application workflows that can then be executed on the Grid [30]. 

7   Future Work and Conclusions 

Based on the work carried out in the GECEM project, Section 5 has introduced a set 
of tools for building a portal around a particular user-designed workflow structure 
constructed from simple workflow patterns. To achieve this, an abstract workflow is 
created by first generating a workflow structure using a design tool and then 
associating an abstract service (identified by a service type) with each node in the 
workflow using a labeling tool. The labeling tool also associates a file type with each 
service input and output. The workflow is then embedded into the portal using a 
compilation tool, the main task of which is to automatically generate the portlets 
needed to allow a portal user to select for each node in the workflow a concrete 
service that is consistent with the abstract service associated with the node, and also 
to select the input files of the workflow. Service types and file types are essentially 
names that are unique within the virtual organization using the portal.  

The approach described in Section 5 targets end-users who want to perform 
“what-if” styles of computational investigation in which the particular service that is 
bound to a node in a workflow may be selected via the portal shortly before 
workflow execution. For example, this allows a user to experiment with different 
algorithms for performing a particular task. On a longer timescale the user also wants 
to create new workflows and to create portals for their execution and management. It 
is assumed that a user will run many workflows before generating a new one, so it 
appears sensible to create the abstract workflow external to the portal. This also 
allows third-party workflow composition tools to be used, provided the compilation 
tool is able to recognize how they represent abstract workflows. It might be argued 
that, rather than having a separate portal for each workflow structure, it would be 
better to manage all the workflows to be used by a Virtual Organization through a 
single portal interface. This does not appear to raise any technical difficulties, and it 
would be quite simple to write a portlet for each workflow to integrate them into a 
single portal. 
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The portal generated through the design-label-compile process is similar to the 
GECEM portal in that it provides mechanisms for the user to specify the files to be 
input to the portal workflow and the services to be invoked. In the current GECEM 
portal services are virtualized, but not the related input and output data sets. Thus, 
users currently must identify data sets by specifying a specific file on a specific 
machine (by using portlets based on the GridPortlets file browser portlet). In future 
work a virtualized file store will allow authorized users to manage, access, and use 
data sets without needing to refer to which physical resource they are actually stored 
on. All input, intermediate, and final data products will be stored in the virtualized 
file store. This will allow a workflow to be started from any intermediate point for 
which the necessary input files are held in the virtualized file store. In addition, files 
will be annotated to support metadata-based searches of the virtualized file store. The 
metadata would include provenance information (how, why, when, and by whom the 
file was produced) and other data deemed necessary to provide a description of a file. 
In particular, the metadata should include sufficient information to distinguish files 
of different types. The simplest way to do this would be if the files were in XML 
format – then files conforming to the same XML Schema would be of the same type. 
The advantage of being able to distinguish files by their type is that it is then possible 
to match files to the inputs and outputs of services, so when the portal user is 
deciding what file to select as the input to a service, only those files of the correct 
type are presented to them. 

This paper has shown how end-users, with no expertise in Grid computing or 
portal development, can make you of simple tools to compose scientific workflows 
that can then be automatically embedded within a portal. The design, labeling, and 
compilation tools are used to specify a workflow and generate a portal that supports 
the end-user in selecting specific services and files for executing an instance of the 
workflow. The integrated view presented here of scientific workflow composition 
and portal design addresses concerns raised by end-users of the GECEM portal, and 
supports a common mode of use of distributed resources based on the input/output of 
files to/from services. Future work will investigate the use of this approach in other 
scientific application areas, such as computational fluid dynamics and structural 
mechanics.
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Q&A - David W. Walker 

Questioner: Dennis Gannon 
What about using Java Webstart applications for launching workflow 
applications. 

David Walker 
Webstart is useful in Java-centric applications. It will ensure that the correct 
JVM and user GUI is installed at the client end, and download the application 
for execution on the client machine, and initiate execution. In the GECEM 
portal we want the application to run remotely, not on the client side, so the 
use of  Webstart would not be appropriate. Also Webstart requires the 
application to be pure Java, whereas the remote applications that GECEM 
access are Fortran codes called from C which is then wrapped as Java using 
JNI. Finally, I believe the client GUI also needs to be written in Java to work 
with Webstart which isn’t the case for a portlet-based GUI. 

Questioner: Boyana Norris 
Are there any tools you are aware of that implement support for workflow 
templates/patterns that can then be specialized by users or middleware? 

David Walker 
I am not aware of any such tools – one of my reasons for bringing up this 
topic at the workshop was the hope that someone here would tell me about 
them.

Questioner: Gabrielle Allen 
What is the advantage of wrapping a legacy application as a Web service, or 
alternatively, why do we need to expose applications as Web services? 

David Walker 
I think that the main advantage of using Web services stems from the set of 
frameworks, tools and supporting software that exists for Web services. Job 
submission and monitoring, and security are of particular importance. Web 
services are also becoming widely-used to coordinate interactions between 
distributed, coupled application components, so exposing a piece of software 
as a Web service makes it easier for third parties to use it. 

Bill Applebe [comment on Gabrielle Allen’s question] 
There are several toolkits for wrapping legacy applications to make them 
easier to use in many contexts (e.g., web or batch). For example, Pyre from 
Caltech (Python wrappers). 



Comment: Mladen Vouk 
I think templates work provided one can abstract a group of workflows and 
provide an appropriate data model to which applications can conform. 

Anne Trefethen [comment on Boyana Norris’ question] 
In the context of problem-solving environments such as Iris Explorer, 
templates and patterns are provided. 



Monday PM Panel Discussion 

Panel
 Anne Trefethen 
 David Schissel 
 Patrick Gaffney 
 Tim Hopkins 
 David Walker 

Questioner: Jim Pool 
Many applications referenced in the presentations are numerically intensive. 
Have you encountered issues in incorporating numerical software, for 
example, handling exceptions due to error messages from subroutines? 

David Walker 
Web service mechanisms exist for exception handling, but to integrate “dusty 
deck” subroutines with these would require some work. The error messages 
would need to be stripped out from the subroutines, and an error code 
returned. If the subroutine is wrapped in Java then the exception would then 
have to be caught in the Java wrapper code, and handed off to the web 
service exception handling mechanism, for example as a SOAP fault. 
Service specific exception classes can be used to handle exceptions. 

David Schissel  
With our ASP model, we provide computational services for specific codes, 
not access to general numerical libraries. We do however have developers 
who use numerical libraries in the physics services that they provide and we 
have encountered no difficulty. 

Questioner: William Gropp 
What can be done to avoid problems caused by making it easy to connect to 
poor software (we have experience with poor numerical libraries that have 
been widely used)? 

David Walker 
A reputation broker could be used to provide information on the 
trustworthiness of a piece of software, with the aim of discouraging the use of 
poor software. 

Anne Trefethen 
Unfortunately researchers are often in the position where they are more likely 
to choose to use software they can get for “free” than commercially 
supported software.   Of course “free” doesn’t always mean of low quality, 
but it does mean that the quality checks we would like to see are often not in 
place. If we imagine a service oriented provision of numerical software then 



we may also see an accumulation of knowledge regarding particular services 
– be it simply use statistics or mechanisms for user community information 
tagging – perhaps as in commercial activities such as Amazon or eBay. 

David Schissel 
In fusion, we push communication. For example in the experimental 
community you can replace the word software with data and have an equally 
relevant question. Using a piece of data or software in a complete knowledge 
vacuum is considered very dangerous as the specialized knowledge that 
indicates areas of non-applicability typically only gets communicated through 
human interaction. Could this be more automated? Yes, it most likely could 
be, but we have not seen a good solution to this problem. 

Tim Hopkins 
This is part of the much wider problem of the quality control of 
numerical/scientific software. There is little tool support for software testing 
especially for Fortran and C that is not commercial and expensive. Software 
testing for numerical codes is generally quite poor. So we need to make the 
requirements for integrating scientific software into grid applications more 
stringent. In particular it should be mandatory that such software comes with 
some evidence of thorough testing. Preferable this should be 
performed/confirmed independently of the software authors. 

One of the major problems at the moment is that there is far too much flaky 
software being used by practitioners who are not in a position to recognize 
when such code might/does deliver poor/incorrect results. These users need 
protecting. 

Questioner: Ron Boisvert 
Much numerical software continues to be developed as Fortran 77 
subroutines. To what extent is this preventing its adoption in grid 
applications? For example, would math software based on virtual machine 
environments, like Java, be more easily integrated into grid applications? 

David Walker 
I don’t think the development of subroutines using Fortran 77 in itself 
prevents its adoption in grid applications. It is quite easy to wrap such 
software in Java and hence to expose it as web services – indeed, there are 
tools that support this. 

Pat Gaffney: 
Speaking from our experience in working with commercial industrial 
companies, we do not perceive the Fortran language as an inhibitor in any 
way, quite the contrary, many engineers and scientists are experienced in 
Fortran. My own company, BSSI, specializes in multi-programming 
environments, notably Fortran and Java because Fortran is preferable for the 
complex numerical simulations that we do. A by-product of this is that the use 
of Fortran for this purpose makes it easier for our customers to work 
collaboratively with us. We can share Fortran modules with them for them to 



modify and plug back into our systems. This promotes collaboration and, 
since we use Fortran 77, 90, and 95, it is especially easy for a range of 
experienced scientists and engineers to collaborate with us. In this way, 
customers and BSSI grow collaboratively together which is necessary for the 
types of problems we solve. 

Bill Applebe 
Math software based on languages such as Java has not been very 
successful (there was an effort called Java Grande to promote scientific Java 
in 2000 that fizzled out). The reason is simply that Java is not very efficient 
(whether interpreted or compiled). Fortran and C will continue to be the 
dominant languages for scientific programming for the foreseeable future. 
Coupling Fortran and C to the languages used for web applications (Python, 
Java, .NET) requires wrappers, that unfortunately are not particularly easy to 
write or maintain. 

Tim Hopkins: 
My experience of numerical software producers is that they are mainly 
interested in implementing their algorithms as proof of concept. Much of the 
code first submitted to ACM TOMS even lacks robust user input checking; so 
I can't believe that we will be able to convince authors of such software to 
spend their time creating wrappers to allow integration of their code into grid 
applications. Nor should we; this is a task for people who possess a different 
skills set. 

Anne Trefethen 
There are many efforts at the moment to develop automatic tools for 
wrapping legacy applications and  whether Fortran or C is used there should 
be no real difficulty.   

Comment: Jim Pool 
We are not discussing a new problem. Ken Kennedy gave a talk at the 
"Second Pasadena Workshop on System Software and Tools for High 
Performance Computing Environments” in January 1995, with an excellent 
description of a possible approach to transitioning research level codes to 
near production codes. Subsequently there was a workshop expanding these 
ideas. However, no US federal agency felt this problem was within its 
charter. 

Gabrielle Allen 
In your experience so far, which part of your grid PSE worked best and which 
were you most disappointed in? 

David Walker 
The use of portlets to provide access to remote services and to aggregate 
content worked well in the GECEM portal. The main disappointment was in 
the incompatibilities between some of the software used to create the portal 
and provide the services. Debugging and fixing problems was difficult. 



David Schissel 
From a general standpoint, at the start of the FusionGrid project five years 
ago, we were most disappointed with the hype of available functionality 
compared to what could actually be accomplished for scientists on day one. 
From a technical standpoint, the conflicting requirements between site 
security and grid security and the lack of LAN multicast support and reliability 
have been the most disappointing. On the positive side, by working on this 
project the fusion community has had the pleasure to work with a large 
number of computer scientists who are eager to make adjustments or even 
fundamental changes to their software to support our community’s needs. 
We certainly hope that these relationships continue into the future as we see 
them helping to push our science forward. 

Questioner: Brian Smith 
The emphasis in the presentations in this session has been on services, 
particularly those facilitating access to grid facilities. Do you see the focus 
changing to request technical enhancements or tools rather than services? 

David Schissel 
We see this as a cyclical development so we feel that both are and will 
continue to be important. 

David Walker 
I don’t see the provision of services and the use of technical enhancements 
or tools as being mutually exclusive. Indeed, the portal/service approach 
provides a way of seamlessly incorporating new capabilities into a grid 
computing environment. 

Anne Trefethen 
I think we see both.  There are requirements for new service capabilities and 
technical enhancements and tools. Particularly as different architects are 
considered this will often lead to further detailed enhancements or 
adjustment of algorithms.   

Pat Gaffney: 
Yes, but this is also happening now. Working as closely with the end-
customer as we do, we are continually probing the customer to discern new 
functionality that would make their job easier. Often, the user can be 
reluctant to come forward with requests and this is probably because many 
software vendors are disinclined to modify their software. This is not true with 
BSSI; it is a deliberate commercial policy to have a continual development 
cycle that improves our commercial software according to user needs. 

For a number of reasons, some of which are discussed in our talk, the focus 
at the moment is primarily on services but not exclusively. Software tools, in 
the form of finished products, are of interest to the end-customer but their 
successful adoption depends on the number of inhibitors the organization 
imposes on the use of the tools and on the allocation of resources for 



learning and running the tools. I do not see these inhibitors being reduced in 
the short term. 
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Open Grid Services Architecture

Jem Treadwell
Hewlett-Packard

Abstract. A decade after taking its first steps as a research project,
grid computing is on the road to "pervasive adoption" across all types
of organization, from the campus to the enterprise data center. While
many forms of grid infrastructure exist today, some proprietary and
some based on open protocols and software components, the key to
continued progress in the evolution of grid computing is
standardization. By building grids and applications on standards-based
components, architects can meet their organizations' needs with
confidence that they are interoperable with other standards-based grids,
and that they can grow and adapt as those needs change. The Global
Grid Forum's (GGF) Open Grid Services Architecture (OGSA(tm))
describes a service-oriented grid architecture that addresses
standardization by defining a set of foundational capabilities for
interoperable grids. The OGSA working group publishes the
architecture framework and related documents. In this session the
speaker will: * Discuss the evolution of grid computing; * Explain how
a service-oriented grid fits with other leading-edge enterprise
technologies; * Provide details of OGSA and its core capabilities,
including progress and plans.



Q&A – Jem Treadwell 

Questioner: G. Allen 
How will scientific applications interact with OGSA? 

Jem Treadwell 
The question related to an existing application and to the use of the Simple 
API for Grid Applications (SAGA) being specified by the Open Grid Forum’s 
SAGA Research Group. In some cases, OGSA services such as the Basic 
Execution Service (BES) will invoke legacy applications without change, 
other than perhaps the use of simple wrapper scripts.  OGSA services will be 
specified with Web service interfaces, so where direct interaction is needed 
these interfaces will need to be invoked. While it may not be practical for 
legacy applications to become Web service clients, it does seem reasonable 
for SAGA or other intermediate APIs to handle the necessary protocol 
exchanges. 

I would strongly encourage SAGA-RG and any group that is concerned with 
interfacing with OGSA to contact Hiro Kishimoto, the OGSA Working Group 
co-chair, to arrange a joint meeting. 

Questioner: D. Gannon 
Great job presenting OGSA! When do you see implementations of OGSA 
emerging? Will H.P. implement a version of OGSA? 

Jem Treadwell 
I think it will take another year or so for OGSA to evolve to a point where 
commercial products are based on it. Although the OGSA WSRF Basic 
Profile is close to publication, the higher-level service specifications and 
profiles such as HPC, Data, and Execution Management must be completed 
before it can be applied in practical applications. The various groups 
developing these are making good progress, but standards work always 
takes time.  

The specifications and profiles will arrive gradually, and developers will 
implement them alongside their existing interfaces—so the move to a fully 
OGSA-compliant infrastructure will be a gradual migration, rather than the 
sudden appearance of a full OGSA suite. 

HP’s grid solutions are based on a combination of internally developed 
components and open-source and partner products. As the various OGSA 
specifications arrive I’d expect that we’ll adopt them in our own products 
where they make sense and where our customers have a need for them, and 
we’ll encourage our partners to adopt applicable standards as they become 
available.



Questioner: A. Trefethen 
Could you say more about the convergence of the conflicting standards? Do 
you anticipate further basic profiles? 

Jem Treadwell 
The WSRF Basic Profile was so named because there was a strong desire 
within the GGF community that OGSA should not be constrained to a WSRF-
based stack, and we were expecting to develop a WS-Management based 
profile. However, given the recent announcement from Microsoft, HP, IBM & 
Intel that they are working on a converged stack, there is currently no activity 
on a WS-Management profile. Once the converged stack is published I would 
anticipate that we would revise the OGSA Basic Profile, but bear in mind that 
the convergence path has been designed so that no refactoring will be 
required for work based on either WSRF or WS-Management. 

Questioner: W. Gropp 
Experiences with languages show that the best are designed by 1 or 1 1/2 
people to give a simple, uniform, consistent vision. OGSA seems to be the 
opposite. What is or can be done to ensure that the parts of OGSA are 
consistent? 

Jem Treadwell 
Standards work is usually the work of a broad-based committee, although 
sometimes a standard is based on work donated by a small group or 
something that is already widely adopted, either of which can make the 
process smoother and faster, and maybe yield a better result. OGSA is far-
reaching, but its components – e.g. BES, Data Management, HPC – are 
being developed by focused working groups, often driven by a core of three 
or four people. The OGSA group frequently holds joint meetings – both 
telecons and face-to-face meetings – with those groups, to discuss the 
integration and ensure that we have consistent goals. 

Questioner: A. Trefethen 
I am interested to see that one of the first profiles is HPC. Are the follow-on 
profiles listed as a wish list or have they been identified by specific groups 
who will drive then? 

Jem Treadwell 
The HPC profile was proposed by Marvin Themer of Microsoft, to address a 
specific product need.  Marvin is driving the work, and it’s making rapid 
progress. The OGSA Security profiles, which address secure 
communication, have been developed within the OGSA-WG, and are nearing 
publication. The other proposed profiles will follow completion of the 
underlying service specifications, and will be developed by the working 
groups developing those specifications. 



Middleware for Dynamic Adaptation of
Component Applications

Boyana Norris1, Sanjukta Bhowmick1,2, Dinesh Kaushik1, and
Lois Curfman McInnes1

1 Mathematics and Computer Science Division, Argonne National Laboratory,
9700 South Cass Ave., Argonne, IL 60439, U.S.A.

2 Department of Applied Physics and Applied Mathematics, Columbia University,
200 S.W. Mudd Building, 500 W. 120th Street, New York, NY 10027, U.S.A.

[norris,bhowmick,kaushik,mcinnes]@mcs.anl.gov

Abstract. Component- and service-based software engineering ap-
proaches have been gaining popularity in high-performance scientific
computing, facilitating the creation and management of large multidis-
ciplinary, multideveloper applications, and providing opportunities for
improved performance and numerical accuracy. These software engineer-
ing approaches enable the development of middleware infrastructure for
computational quality of service (CQoS), which provides performance
optimizations through dynamic algorithm selection and configuration
in a mostly automated fashion. The factors that affect performance are
closely tied to a component’s parallel implementation, its management
of parallel communication and memory, the algorithms executed, the
algorithmic parameters employed, and other operational characteris-
tics. We present the design of a component middleware CQoS archi-
tecture for automated composition and adaptation of high-performance
component- or service-based applications. We describe its initial imple-
mentation and corresponding experimental results for parallel simula-
tions involving time-dependent nonlinear partial differential equations.

1 Introduction

As computational science progresses toward ever more realistic multiphysics
and multiscale applications, no single research group can effectively develop,
select, or tune all of the components in a given application, and no single tool,
solver, or solution strategy can seamlessly span the entire spectrum efficiently.
Component- and service-based software development approaches help manage
some of the complexity of developing such large scientific applications. Current
component and service specifications, however, provide support only for basic
manipulation of components and services, such as repositories, instantiation,
connection, and execution. Common component interfaces and service speci-
fications enable easy access to suites of independently developed algorithms
and implementations, and dynamic composability facilitates switching among
different implementations during runtime. The challenge then becomes how to



automatically make sound choices from among the available implementations
and parameters, with suitable tradeoffs among performance, accuracy, math-
ematical consistency, and reliability. Such choices are important both for the
initial composition and configuration of an application and for adaptive control
during runtime.

With the increased availability of solution methods implemented as compo-
nents or services, a major challenge is to ensure that the choice of one of many
implementations of a particular interface produces a result of the desired quality
within a reasonable amount of time. One can address this challenge by automat-
ing at least some of the process of selecting and configuring components, with
the goal of minimizing execution time within a set of quality constraints. In or-
der to provide such support, a specification is needed that describes the quality
metrics, i.e., metadata for functional and nonfunctional properties and require-
ments of components. Furthermore, the performance of components must be
monitored and recorded in a nonintrusive fashion. In addition, the performance
data must be analyzed in order to construct performance models of individual
components and whole applications, which can then be used by heuristics that
take into account performance information and quality constraints in order to
compose and adapt applications in an optimized fashion.

Computational Quality of Service. We are addressing this challenge by develop-
ing a high-level specification and corresponding middleware for computational
quality of service (CQoS) [49], or the automatic selection and configuration of
components to suit a particular computational purpose. CQoS extends the fa-
miliar concept of quality of service (QoS) in networking with domain-specific
quality metrics and the ability to specify and manage characteristics of the
application in a way that adapts to the changing computational environment.
Traditional QoS emphasizes system-related performance effects such as CPU
or network loads to implement application priority or bandwidth reservation in
networking. Although performance is a shared general concern, high efficiency
and parallel scalability are more significant requirements for high-performance
scientific applications, along with algorithmic or problem-specific qualities, such
as the level of solution accuracy achieved by a particular algorithm. This situa-
tion has motivated us to define an expanded notion of CQoS that better reflects
the characteristics and needs of high-performance component- or service-based
scientific applications.

Common Component Architecture. While our goal is a component-neutral or
service-model-neutral CQoS architecture, our work to date on implementing
CQoS middleware employs the Common Component Architecture (CCA) [4,
7, 17], which is designed specifically for the needs of parallel, scientific high-
performance computing (an area where other component approaches are lim-
ited). A comprehensive description of the CCA, including a discussion of how
it differs from other component models, is available [7]; here we present a brief
overview of the CCA environment, focusing on the aspects most relevant to
CQoS infrastructure.
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The specification of the Common Component Architecture [16] defines the
rights, responsibilities, and relationships among the various elements of the
model. Briefly, the elements of the CCA model are as follows:

– Components are units of software functionality that can be composed together
to form applications. Components encapsulate much of the complexity of the
software inside a black box and expose only well-defined interfaces.

– Ports are the abstract interfaces through which components interact. Specif-
ically, CCA ports provide procedural interfaces that can be thought of as
a class or an interface in object-oriented languages, or a collection of sub-
routines, or a module in a language such as Fortran 90. Components may
provide ports, meaning that they implement the functionality expressed in a
port (called provides ports), or they may use ports, meaning that they make
calls on a port provided by another component (called uses ports). Compo-
nents that provide the same port(s) are considered functionally equivalent
and can thus be used interchangeably.

– Frameworks manage CCA components as they are assembled into applica-
tions and executed. The framework is responsible for instantiating compo-
nents, destroying instances, and connecting uses and provides ports without
exposing the components’ implementation details. The framework also pro-
vides a small set of standard services that are available to all components.
The CCA implementation of the CQoS infrastructure described in this paper
relies on the CCA specification and basic services to provide new middleware
components for performance monitoring, analysis, and dynamic application
adaptation.

Paper Organization. The remainder of this paper introduces our component
middleware architecture for CQoS. Section 2 discusses related work, and Sec-
tion 3 introduces several high-performance scientific applications that motivate
this research, with emphasis on simulations involving the parallel solution of
time-dependent, nonlinear partial differential equations (PDEs). Section 4 de-
scribes our approach and implementation, and Section 5 presents preliminary
experimental results. Section 6 discusses conclusions and directions of future
work.

2 Related Work

Adaptive software for scientific computing is an area of emerging research, as
evidenced by numerous recent projects and related work [14, 18, 21–26, 31, 35,
36, 39, 40, 43, 53, 55, 57, 60, 62–66, 69]. Many approaches to addressing different
aspects of adaptive execution are represented in these projects, from compiler-
based techniques to development of new numerical adaptive algorithms.

Three approaches of interest for specifying semantic information are mod-
els, contracts, and service-level agreements. Furmento et al. [28] as well as Gu
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and Nahrstedt [30] discuss performance models and their use in overall com-
ponent application assembly at runtime within the context of distributed envi-
ronments; Beugnard et al. [8] define a general model of software contracts and
discuss approaches for making components contract-aware. Similarly, the SAM-
code model of adaptable mobile agents [1] allows the specification of contracts
— consisting of one precondition and one postcondition — for each adapt-
able method. Violations are used to select from different implementations of a
method at runtime. The GlueQoS work of Wohlstadter et al. [68] focuses on
mediating quality-of-service requirements — specified as assertions — between
clients and Web services. Bennett et al. [6] discuss the need for service-level
agreements for defining the terms and conditions of use, with agreements pro-
viding a minimum of coupling between components. They also emphasize the
importance of characterizing relevant component features to ensure both the
correct use and provision of services. Raje et al. [50] describe a QoS framework
for distributed, heterogeneous components and provide a catalog of QoS met-
rics [13]. The Software-Implemented Fault Tolerance (SIFT) environment for
Adaptive Reconfigurable Mobile Objects of Recovery (ARMOR) processes [67]
relies on their model for functional reconfiguration to adjust application behav-
ior to meet dependability requirements. In this case adaptation is accomplished
through user-specified assertion checks at critical execution points and the use
of microcheckpointing to adjust application state accordingly.

In the area of dynamic adaptation based on monitoring application behavior,
Reiner and Pinkerton [52] explore dynamically changing control parameters to
improve operating system performance and use experiments to determine im-
proved settings. They develop a methodology for adaptive tuning as well as
algorithm, policy, and (fixed) parameter selection. Whisnant et al. [67] rely on
human intervention to deal with reconfiguration after a problem is detected at
runtime. Feather et al. [27], however, use event monitoring of behavioral devi-
ations and changing environmental conditions to reconcile the intended system
behavior with individual requirements at runtime. In these cases, monitoring
an application at runtime involves checking control parameters and monitoring
events, including application failure.

Unlike these efforts, our approach is specifically targeted at large-scale paral-
lel computations and relies on high-level interface specifications and technologies
tailored for scientific computing. In designing our CQoS interfaces and mid-
dleware components, we rely on the existing high-performance infrastructure
provided by the CCA, in which multiple component implementations conform-
ing to the same external interface standard are interoperable and the runtime
system ensures that the overhead of component substitution is negligible.

3 Motivating Applications and Algorithms

As discussed in [45], a variety of high-performance scientific applications mo-
tivate the development of infrastructure for computational quality of service,
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including mesh partitioning in combustion simulations [58,59], resource manage-
ment in quantum chemistry [38], and the solution of linear systems that arise in
nonlinear PDE-based simulations in domains such as high-energy accelerators,
computational fluid dynamics, and radiation transport. A common feature of
these large-scale, long-running simulations is the combination of diverse numeri-
cal capabilities, such as physics models, discretizations, linear solvers, nonlinear
solvers, and optimization solvers, each having multiple implementations with
varying degrees of fidelity, robustness, efficiency, and scalability. Moreover, it
is not generally known a priori which combination of implementations will be
best suited for a particular problem instance and computational environment.

Before explaining in Section 4 our approach to handling these issues with
CQoS middleware, we briefly introduce two parallel PDE-based applications in
which a significant fraction of overall execution time is devoted to the solution of
large-scale, sparse linear systems. In this context, CQoS focuses on selecting and
configuring linear solvers (typically preconditioners and Krylov methods) based
on the context of the overall simulation. Because the properties of linear systems
in time-dependent or nonlinear applications may significantly change during
the course of a simulation, CQoS-enabled adaptive multimethod solvers have
promise to improve robustness and reduce overall time to solution [10–12, 44].
Section 5 presents experimental results of CQoS-enabled adaptive linear solvers
for these two applications.

Transonic Euler Flow. We consider the solution of the unsteady compressible
three-dimensional Euler equations using PETSc-FUN3D [3], an unstructured
mesh code originally developed by W. K. Anderson [2] and subsequently paral-
lelized using MeTiS [34] for mesh partitioning and the PETSc library [5] for the
preconditioned Newton-Krylov family of implicit solution schemes. This code
uses a finite volume discretization with a variable-order Roe scheme on a tetra-
hedral, vertex-centered mesh; details of the discretization and parallelization are
discussed in [3]. We explore the standard aerodynamics test case of transonic
flow over an ONERA M6 wing using the frequently studied parameter combina-
tion of a freestream Mach number of 0.839 with an angle of attack of 3.06o. The
robustness of solution strategies is particularly important for this model because
of the so-called λ-shock that develops on the upper wing surface, as depicted
in Figure 1. The PDEs are initially discretized by using a first-order scheme;
but once the shock position has settled down, a second-order discretization is
applied.

Radiation Transport. Under the assumptions of isotropic radiation with no
frequency dependence, transport through a material characterized by spatially
varying atomic number (Z) and thermal conductivity (κ) can be modeled by
the following coupled nonlinear equations in radiation energy density (E) and
material temperature (T ):

∂E

∂t
−∇ · (DE∇E) = σa(T 4 − E),

∂T

∂t
−∇ · (DT∇T ) = −σa(T 4 − E) (1)
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Fig. 1. Mach contours on the ONERA M6 wing at freestream Mach number = 0.839.

with

σa =
Z3

T 3
, DE(E, T ) =

1

3σa + |∇E|
|E|

, and DT (T ) = κT
5
2 . (2)

In order to restrict the maximum speed of propagation to the speed of light,
the above formula for diffusivity DE includes Wilson’s flux limiter |∇E|/|E|
[29, 46], which makes these governing equations highly nonlinear. The spatial
discretization in [29] employs Galerkin finite elements with linear piecewise
continuous basis functions over simplices in 2D and 3D. Temporal integration
is done by a solution-adaptive implicit Euler method. This code shows excellent
scalability on the TeraGrid, Blue-Gene, and System X platforms [29].

The cross section of the computational domain in 3D is the unit square, with
a radiation flux incident on the left boundary. The atomic number is location
dependent (only in x and y):

Z(x, y, z) =
{

10 for 1
3 ≤ x ≤ 2

3 and 1
3 ≤ y ≤ 2

3 ,
1 elsewhere. (3)

The boundary conditions for Equations (1) are set by imposing a constant
radiation field at x = 0:

n · DE∇E +
E

2
= 2 at x = 0 and n · DE∇E +

E

2
= 0 at x = 1,

and n · ∇E = 0 at y = 0 and y = 1,

where n is the outward unit normal to the boundary, as in [42]. The temperature
contours showing the propagation of the thermal front at t = 1 and t = 3 are
given in Figure 2.

Algorithmic Overview. Both of these nonlinear PDE-based applications employ
Newton-Krylov methods (see, e.g., [47]) within the PETSc library [5] to solve
nonlinear equations of the form f(u) = 0, where f : Rn → Rn, at each timestep
of the simulation. We use a two-step sequence of (approximately) solving the
Newton correction equation

(f ′(u�−1)) δu� = −f(u�−1) (4)
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Fig. 2. Evolution of material temperature in time for a 3D example with a tetrahedral
mesh of 237,160 vertices and 1,264,086 elements. The left figure shows the temperature
contours at t = 1, while the right shows temperature at t = 3.

and then updating the iterate via u� = u�−1 + δu�. If the Jacobian matrix f ′

is poorly conditioned, the Krylov method will require an unacceptably large
number of iterations. The system (4) can be transformed into the equivalent
form B−1f ′(u�−1)δu� = −B−1f(u�−1) through the action of a preconditioner,
B, whose inverse action approximates that of f ′, but at smaller cost. We thus
consider in Section 5 a variety of different preconditioners and Krylov methods,
with a goal of achieving low computational cost and scalable parallelism.

The radiation transport code uses an analytical second-order accurate Ja-
cobian matrix f ′, where the preconditioner is derived from the same matrix.
In contrast, the compressible Euler application employs matrix-free Newton-
Krylov methods (see, e.g., [15]), with which we compute the action of the Jaco-
bian on a vector v by directional differencing of the form f ′(u)v ≈ f(u+hv)−f(u)

h ,
where h is a differencing parameter. We use a first-order analytic discretization
to compute the corresponding preconditioning matrix.

For both applications, the time to solve the Newton correction equation (4),
is a significant fraction of overall execution time (about 35% for the radiation
transport code and about 75% for the compressible Euler code). Moreover, as
further discussed in Section 5, changes in the numerical characteristics of the
linear systems reflect the changing nature of the simulations. For example, the
use of pseudo-transient continuation [37] in the compressible Euler applica-
tion generates linear systems that become progressively more difficult to solve
as the simulation advances (see Figure 5). Likewise, the linear and nonlinear
systems become progressively more challenging as the timesteps (based on dy-
namical scales of the problem) increase in the radiation transport application
(see Figure 6). Consequently, both applications provide strong motivation for
the development of CQoS middleware to support multimethod adaptive linear
solver algorithms.
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4 Computational Quality of Service for Components

This section describes in detail our approach to defining and implementing com-
putational quality of service for components, which was introduced in Section 1.

4.1 Approach

We begin by reviewing the main requirements for enabling computational qual-
ity of service support in component-based scientific applications. First, we must
be able to monitor the performance of individual components without requir-
ing manual code modifications. The performance data must be collected and
stored for later access. Performance information alone, however, is not sufficient
to enable effective adaptive strategies in numerical software. Thus, we must also
identify nonfunctional quality metrics, which are problem- or algorithm-specific,
and nonintrusively record the resulting metadata corresponding to these met-
rics along with the performance data. The accumulated runtime information
can also be augmented with a priori or source-based analysis of algorithms,
whenever such are available. Given this combined database, the application
performance can be characterized by means of different approaches, including
machine learning and statistics. The results of such analyses would be used to
construct performance models for individual components or whole applications.
Finally, there must be a mechanism for specifying dynamic adaptation (compo-
nent reconfiguration or substitution) based on these performance models and
additional problem metadata.

Our goal is to address these requirements by providing middleware for
component- or service-oriented frameworks, with the CCA as our initial tar-
get component model. We rely on the discipline of interface definition, which
is at the core of both component- and service-based software engineering ap-
proaches, in order to automate the gathering of performance and other data,
as well as to enable automated dynamic reconfiguration and substitution of
computational units, expressed as either components or services.

The principal purpose of CQoS in the context of high-performance com-
puting is to provide methodology and support for optimizing the time to solu-
tion of component- or service-based applications. We have identified two main
ways through which this goal can be achieved: (1) by optimizing the selection
component instances for the initial composition of an application and (2) by
dynamically reconfiguring or substituting component instances.

4.2 Architecture

To support CQoS in scientific applications, we describe a high-level architecture
that is not dependent on a particular component or service model (Figure 3).
This architecture consists of two main parts: (1) measurement and analysis
components, which are responsible for monitoring and gathering performance
information and other metadata and for operating on and augmenting these
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data, and (2) control infrastructure, which consists of components that im-
plement domain-specific adaptive strategies, along with runtime services for
component reconfiguration and substitution. Work that has contributed to the
design of this architecture is described in [32,41,45,49,51,61].

Analysis Infrastructure
Performance monitoring, 
problem/solution characterization, 
and performance model building

Control Infrastructure
Interpretation and execution of control laws to 
modify an application’s behavior

Performance
Databases

(historical & runtime)

Interactive Analysis 
and Model Building

Substitution
Assertion
Database

Instrumented
Component

Application Cases

Control System
(parameter changes and
component substitution) Scientist can 

provide decisions 
on substitution and 
reparameterization

CQoS-Enabled
Component Application

Component A

Component B

Component C

Component
Substitution Set

Scientist can 
analyze data 
interactively

Fig. 3. CQoS middleware architecture overview.

The monitoring portion of the infrastructure deals with collecting perfor-
mance data, as well as domain-specific metadata that is related to or may
impact the performance of an application. The two main requirements for the
monitoring and data gathering support are that (1) minimal or no code changes
are needed to enable monitoring, and (2) the overhead of the data gathering
functionality is negligible with respect to the rest of the computation.

The analysis infrastructure consists of components that operate on any avail-
able performance data and associated metadata for individual components or
whole applications. Different types of analyses, for example statistical or ma-
chine learning, can be incorporated in order to derive a characterization, or
model, of the performance of an application or its constituent components. The
models generated by analyses or provided by developers are stored in the persis-
tent performance database, along with references to and from the performance
data from which they were generated. When performance models of individual
components are available, analysis components for generating whole-application
models, such as those described in [41], can be employed to derive a perfor-
mance model for an application composed from these components. Another
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source of performance models is analytic closed expressions for the execution
time provided by users or source code analysis tools. Such models are usually
less accurate and are limited by the complexity of the parameterization used.
While the accuracy of performance models can vary greatly, the availability of
such models is crucial for enabling CQoS support, both for initial application
composition and for runtime adaptation.

4.3 Implementation

While the high-level architecture described in Section 4.2 represents our vision
of the general structure of middleware for CQoS support, it does not dictate
low-level implementation details; thus, specialized implementations can be pro-
vided for different computational environments. Our current focus is on tightly
coupled high-performance architectures because the majority of our motivating
applications are written for such platforms using a single-program multiple-
data (SPMD) programming model. This does not preclude implementations
targeting more loosely coupled Grid-based environments, which would be able
to reuse at least some of the middleware analysis and control infrastructure
implementations.

We have implemented portions of the architecture described in Section 4.2;
an early prototype is described in [48]. The initial implementation provides auto-
mated performance instrumentation of C++ CCA components using the Tuning
and Analysis Utilities (TAU) software [54]. In addition to providing portable
instrumentation capabilities, TAU provides a database format definition, the
Performance Data Management Framework (PerfDMF) [33], for storing perfor-
mance data and other application metadata. In our initial implementation, we
leveraged the performance monitoring approach described in [41], extending it
to collect component-specific metadata in addition to performance metrics. For
example, in an application involving the solution of a nonlinear PDE using a
Newton-based solver, we monitor and record the number of nonlinear iterations.
Furthermore, we implemented context-sensitive monitoring of performance and
related metadata; for example, within each nonlinear solution, we monitor and
record the linear solver algorithm used, the preconditioner type, and the num-
ber of linear iterations (for iterative Krylov subspace solvers). In the database,
performance and algorithm-specific execution metadata is associated with an
application experiment, which is defined as an application instance consisting
of a set of component instances and their configurations. Including component
configuration parameters in the CQoS metadata is crucial because they can
significantly change the performance characteristics of an application; different
parameter values can result in drastically different performance for the same set
of components. For example, in a driven cavity fluid dynamics simulation [19],
the lid velocity and Grashof number determine to a large degree the difficulty
of the problem instance; in addition, algorithmic parameters, such as the initial
CFL number, affect the convergence speed and thus total execution time.
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Our initial use case for the CQoS infrastructure focuses on enabling adaptive
algorithms for the solution of nonlinear PDEs. In particular, we target multi-
method approaches to adaptive linear system solution, such as those described
in [10, 11, 44]. While it is possible to define application-independent adaptive
strategies based only on general data mining of the historical performance in-
formation, our initial approach is based on developing application or domain-
specific analysis and corresponding control components, which employ both the
performance information and the associated application-specific metadata. The
main disadvantage of this approach is that it is not generally applicable in a
black-box fashion to arbitrary applications for which we have gathered sufficient
performance data. A significant advantage, however, is that by focusing on de-
veloping analysis algorithms and adaptive strategies for a particular application
domain, we are able to construct much more accurate performance models and
more detailed control components, resulting in greater potential performance
improvements.

An implementation of a subset of the CQoS infrastructure for adaptive linear
solver components in time-dependent nonlinear PDE-based applications is illus-
trated in Fig. 4. New middleware components for monitoring the performance
of nonlinear and linear solver components and for recording algorithm-specific
metadata are introduced. An adaptive strategy component serves as a proxy
for a linear solver component, presenting the same public interface as a non-
adaptive linear solver component. The adaptive strategy can be implemented
as one or more components; in this case, it combines the analysis and control
portions of the CQoS architecture for selecting among different linear solver
algorithms throughout the nonlinear solution process.

Fig. 4. Adaptive linear solver components in nonlinear PDE applications: a typi-
cal component application without adaptivity (top) and the same application with
support for performance monitoring and adaptive linear solvers (bottom).

Grid-Based Problem Solving Environments            137



We have developed a number of adaptive heuristics with various degrees of
generality. For example, an approach that is generally applicable to Newton-
based nonlinear system solution is to monitor the nonlinear rate of convergence
and switch linear solvers when a given threshold is reached. Approaches that
exploit some domain or application-specific knowledge in addition to the algo-
rithmic metadata can result in more effective adaptive behavior. For example, a
change in a physical parameter that is known to affect the characteristics of the
linear systems can be used to trigger linear solver component substitution. In
general, when designing new adaptive strategies, we exploit both application-
specific and algorithmic parameters whenever possible. Initial heuristics for a
new application domain may be fully manual, using human insight to guide the
adaptation, and gradually evolving into more automated strategies that include
more sophisticated analysis components.

5 Experimental Results

We used the Jazz cluster at Argonne National Laboratory to run the simulations
for the compressible Euler and radiation transport applications introduced in
Section 3. The cluster has a Myrinet 2000 network and 2.4 GHz Pentium Xeon
processors with 1-2 GB of RAM. We experimented with one problem instance
from each motivating application, both of which required the solution of large-
scale linear systems with sparse coefficient matrices. The compressible Euler
code generated Jacobian matrices of rank approximately 1.8×106 with 1.3×108

nonzeros, while the radiation transport code generated matrices of rank 4.5×105

with 6.3 × 106 nonzeros. We ran the simulations on four processors using base
solvers composed of various Krylov methods and subdomain solvers for a block
Jacobi preconditioner with one block per processor.

We compare the performance of the simulations using adaptive solvers with
that of the base solvers. Use of adaptive solvers can improve the overall per-
formance by dynamically selecting the most appropriate method to match the
needs of the current linear system, such as combining more robust (but more
costly) methods when needed in particularly challenging phases of solution with
faster (though less powerful) methods in other phases. Adaptive solvers can be
defined by the heuristic employed for method selection. The efficiency of an
adaptive heuristic depends on how appropriately it determines switching points,
or the iterations at which to change linear solvers. In this paper we employed
sequence-based adaptive heuristics, which rely on a predetermined sequence of
linear solvers and then “switch up” to a more robust but more costly method
or “switch down” to a cheaper but less powerful method as needed during the
simulation. The sequence of base solvers is ordered by the average time per
nonlinear iteration required by each solver. This measurement provides a rough
estimate of the strength of the linear solver.
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5.1 Transonic Euler Flow

Solver Specifications. We employed the following four base solvers, consisting of
a Krylov method and block Jacobi preconditioner with one block per processor
with the specified subdomain solver:

1. GMRES with SOR as a subdomain solver, designated as GMRES-SOR
2. Bi-conjugate gradient squared (BCGS) with no-fill incomplete factorization

(ILU(0)) as the subdomain solver, called BCGS-ILU0
3. Flexible GMRES (FGMRES) with ILU(0) as the subdomain solver, desig-

nated as FGMRES-ILU0
4. GMRES with ILU(1) as a subdomain solver, designated as GMRES-ILU1

Adaptive Heuristics. The compressible Euler code uses pseudo-transient con-
tinuation [37] to advance the solution to an assumed steady state. The CFL
number [37] provides a good indication of the relative difficulty of the resulting
Newton system, with lower CFL numbers indicating systems that are better
conditioned and thus easier to solve than those with higher CFL numbers. The
left-hand graph of Figure 5 shows that the change in CFL number is inversely
reflected by the change in the nonlinear residual norm. Thus, the nonlinear
residual norm is a good indicator of the level of difficulty of solving its corre-
sponding Newton correction equation: the lower the residual norm, the more
difficult the linear system. Based on trial runs of the application, we divided the
simulation into four sections: (a) ||f(u)|| ≥ 10−2, (b) 10−4 ≤ ||f(u)|| < 10−2,
(c) 10−10 ≤ ||f(u)|| < 10−4, and (d) ||f(u)|| < 10−10. Whenever the simulation
crosses from one section to another, the adaptive method switches up or down
accordingly.

The relative linear convergence tolerance was 10−3, and the maximum num-
ber of iterations for any linear solve was 30. We ordered these methods for use
in the adaptive solver as 1, 2, 3, 4, according to the average time taken per non-
linear iteration in the first-order discretization phase of the simulation, which
can serve as a rough estimate of the strength of the various linear solvers for
this application.

Results. The right-hand graph of Figure 5 show the switching points among
these methods in the adaptive polyalgorithmic approach. The simulation starts
with method 1, then switches to method 2 at the next iteration. The switch to
method 3 occurs at iteration 25. The discretization then shifts to second order at
iteration 28, and the initial linear systems become easier to solve. The adaptive
method therefore switches down to method 2. From this point onward, the
linear systems become progressively more difficult to solve as the CFL number
increases; the adaptive method switches up to method 3 in iteration 66 and
method 4 in iteration 79. The last change is accompanied by an increase in the
time taken for the succeeding nonlinear iteration. This increased time is devoted
to setting up the new preconditioner, which in this case changes the block Jacobi
subdomain solver from ILU(0) to ILU(1) and consequently requires more time
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Fig. 5. Left: Convergence rate (lower plot) and CFL number (upper plot) for the base
and adaptive solvers on 4 processors. Right: Time per nonlinear iteration for the base
and adaptive solvers on 4 processors.The labeled square markers indicate when linear
solvers changed in the adaptive algorithm.

for the factorization phase. The execution time of the adaptive polyalgorithmic
scheme is 3% better than the fastest base method (FGMRES-ILU0) and 20%
better than the slowest one (BCGS-ILU0).

5.2 Radiation Transport

Solver Specifications. We employed the following four base solvers, consisting of
a Krylov method and block Jacobi preconditioner with one block per processor
with the specified subdomain solver:

1. GMRES with SOR as a subdomain solver, designated as GMRES-SOR
2. Flexible GMRES (FGMRES) with ILU(0) as a subdomain solver, desig-

nated as FGMRES-ILU0
3. GMRES with ILU(0) as a subdomain solver, designated as GMRES-ILU0
4. Bi-conjugate gradient squared (BCGS) with with ILU(0) as a subdomain

solver, designated as BCGS-ILU0

The relative linear convergence tolerance was 10−3 and the maximum number
of iterations for any linear solve was 80.

Adaptive Heuristics. In contrast to the previous application, the radiation trans-
port code completely solves a nonlinear system at each time step. The number
of nonlinear iterations (4-10) required for convergence of each nonlinear system
is quite small, rendering the use of adaptive solvers specific to each nonlinear so-
lution unnecessary. However, the difficulty of the nonlinear systems themselves
varies over the timesteps, and this factor can be utilized to generate adaptive
solvers. Thus, the linear solvers stay constant during the solution of each non-
linear system but may change as the degree of difficulty in nonlinear equations
changes with the timesteps.

The left-hand graph of Figure 6 plots the timestep size with respect to
the simulation’s progress. We sampled the average time per iteration at time
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intervals of 1 second. The right-hand graph shows the average time per iteration
of the base solvers at these intervals. We note that although solvers 1 and 4
remain in their highest and lowest positions, the relative order of solvers 2 and
3 varies, especially between the time intervals 2 and 3. Thus the sequence of
solvers is 1, 2, 3 and 4, except in the interval (2-3 seconds), where the sequence
is 1, 3, 2 and 4.

Fig. 6. Left: Change in timestep size over the simulation. Right: Change of average
time per nonlinear iteration as simulation progresses. From left to right the bar indi-
cates average time per iteration of solvers 1, 2, 3, and 4 within the timestep interval
given in the x-axis. The legend shows the average time for each solver, over the entire
simulation.

In addition to the timestep, a good indicator of the difficulty of the prob-
lem is the ratio of the linear iterations to nonlinear iterations. As the relative
difficulty of the nonlinear system increases, this ratio increases correspondingly.

Results. We experimented with an automated adaptive solver, where the lin-
ear solver changes with change in the ratio of the linear to nonlinear iterations
increases by 10%. Generally we switched to a faster solver if the increase was
more than 10%; however, the ratio increased significantly in the first few step
up to 30%. Therefore we switched from solver 1 to solver 3 skipping the in-
termediate solver 2. Another aberration to this rule was in the (2-3 second)
interval where, since solvers 2 and 4 have nearly the same average time per
iteration, we switched from solver 4 to solver 2 when the ratio increased by
10%. Since a switch in solvers can potentially increase the time, chiefly because
of data structure manipulations needed when resetting the Krylov method and
preconditioner, we kept the solver fixed for a window of at least four timesteps
and then switched if necessary.

The solver switches shown in Figure 7 are as follows. The simulation begins
with method 1 and switches to method 3 at time step 6, and then to method
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4 at timestep 10. The next switch occurs at time step 552 to method 2. Then
at timestep 740 the solver is changed to method 3, and finally at step 744 the
solver becomes method 4 and this is maintained to the end. The automated
adaptive solver is 1.2% better than the fastest base method (BCGS-ILU(0))
and 42.0% better than the slowest method (GMRES-SOR).
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These preliminary experiments with the two motivating applications high-
light the promise of adaptive solvers in the context of long-running simulations
in which a single algorithm may not perform best throughout the entire simula-
tion. These experiments also emphasize that solver performance differs consider-
ably across application domains. For example, while BCGS-ILU(0) performed
well for the radiation transport code, it was not the best performer for the
transonic Euler code. The experiments also show that heuristics for adaptive
multimethod solvers depend on the nature of the application.

Ongoing work includes applying these insights in adaptive strategies to
larger problem instances of the radiation transport and transonic Euler applica-
tions. We are also working to incorporate scalable solver components [56] under
development by the Terascale Optimal PDE Simulations (TOPS) project [20],
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which define a common interface through which one can provide easy access
to a broad range of scalable solvers developed by different groups at different
institutions.

6 Conclusions

Motivated by the emerging needs of high-performance component-based sci-
entific applications, we have introduced a general middleware architecture for
computational quality of service, which provides support for runtime adapta-
tion of component- or service-based applications with the goal of reducing the
overall time to solution. We described an initial implementation of the CQoS
architecture for CCA components, which provides support for adaptive algo-
rithms, such as linear system solution. We demonstrated the effectiveness of this
adaptive approach on parallel simulations of radiation transport and transonic
Euler flow. While our current emphasis is on SPMD component applications, the
overall architecture can be implemented in other contexts, such as distributed
components and service-based applications.

Our current work focuses on refining the initial implementation to conform
more closely to the CQoS overall architecture, including separation of analysis
and control middleware components, as well as a robust implementation of the
database management components. Future plans include adding more general
analysis algorithms for extracting performance characteristics using statistical
and machine learning methods [9] and leveraging related work by Eijkhout and
Fuentes [26] on matrix characterization and metadata. We also will continue to
explore the use of our CQoS approach in new application domains.
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Q&A – Boyana Norris 

Questioner: M. Thomas 
What is the cost of using these components? 

Boyana Norris 
For single-language components, the cost of a component method invocation 
is equivalent to a virtual function call. For multi-language components, the 
cost is equivalent to several function calls, and is usually negligible if the 
methods being called are not too fine-grained.  

Questioner: A. Trefethen 
Is the cost of mixed language components part of the decision making in 
composing a set of components? It may be optional to keep to a single 
language? 

Boyana Norris 
Currently the cost of mixed language component calls is not accounted for in 
the composition because it is normally insignificant. In general, at least 
measuring and reporting this cost can help application developers make 
better design choices when creating component interfaces. It is also possible 
to develop components for use in a single-language environment, currently 
C++ or C, as well, and the CCA Forum is developing runtime component 
frameworks for support of additional languages, such as Fortran. 

Questioner: W. Enright 
If there are two independent components (e.g., mesh-selector and linear 
solver), the choice of best combination may not be straightforward. How can 
this be handled? 

Boyana Norris 
The analysis of arbitrary combinations is too costly to perform at runtime and 
is thus not well suited to adaptive execution (although some simple heuristics 
may be possible). Thus, the CQoS infrastructure would decrease the number 
of good combinations of components by performing offline analyses using 
any available performance data and models for individual components, and 
then constructing a performance model for the performance of the whole 
application with different combinations of component instances. This 
provides a set of static combinations (one of which will be the initial 
application configuration), which can then be used by adaptive strategies for 
deciding on component substitution at runtime. 



Questioner: M. Thune 
A key concern is the overhead for the actual adaption. How are you 
addressing this? 

Boyana Norris 
The adaptive heuristics we have developed so far are very inexpensive; 
more costly analyses needed are performed offline, prior to executing the 
application whenever possible and the results are stored in the performance 
database and loaded for use by dynamic adaptive strategies. 

Questioner: Peter Hemker 
Is automatic selection of an algorithm (e.g. the selection of a preconditioner) 
a sufficiently well-defined problem that allows complete automatic treatment? 
(Shouldn’t one provide additional insight about the problem to make a proper 
decision?) 

Boyana Norris 
We don’t believe that full automation is possible with the current amount of 
information available in typical numerical libraries and thus additional 
information is necessary. This type of information is provided by a domain 
specialist (e.g., an expert in Krylov linear solution methods) and incorporated 
into the component’s metadata. 

Questioner: A. Trefethen 
Have there been difficulties in agreeing the additional metadata?  

Boyana Norris 
Yes, there are some disagreements in selecting the format itself, as well as 
the actual contents, but for now the CQoS group is small and thus able to 
agree relatively easily. 

Questioner: A. Trefethen 
Depending on the choice made, xml vs. interface, what will the impact be on 
the users? 

Boyana Norris 
Some format choices will have a significant impact on usability, e.g., XML, 
and thus need additional tools for making creation, editing, and searching 
easier. Associating the metadata with interfaces has the advantage of being 
local to the interfaces it applies to, but it can easily become very verbose and 
obscure the interface definitions themselves. 



Questioner: B. Ford 
Place of preconditioning as compared with use of multi-method algorithms. Is 
there not often more to be gained from preconditioning rather than heuristic 
method selection? 

Boyana Norris 
Different types of preconditioners are considered “methods” in the multi-
method approach, for example a composite solver that consists of using 
GMRES(30) with SOR preconditioning and then switching to GMRES(30) 
with ILU(1) preconditioning is considered a 2-solver method. 
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Abstract. Industrial and scientific research activity increasingly involves the 
geographically distributed utilisation of multiple tools, services and distributed 
data. Grid and Service Orientated Architecture concepts are being widely 
investigated as a means to deploy Virtual Organisations to support the needs 
for distributed collaboration.   A generic Distributed Tool, Service and Data 
Architecture is described together with its application to the aero-engine 
domain through the BROADEN project. Two fundamental issues for the 
design of the VO have been addressed: how to maximise the potential of Grid 
computing to address the complex data mining challenges in the condition 
monitoring application; and how to maximise the potential of a SOA to build 
and deploy a flexible and efficient collaborative workbench that integrates the 
required tools and services.   

1 Introduction 

The Grid and Service Orientated Architecture (SOA) paradigm offer significant 
opportunities for the development and deployment of Virtual Organisations (VO) 
which can support complex scientific and engineering interactions.  This paper 
describes the development of a VO architecture to support a condition health 
monitoring application in the aero-engine domain. This VO provides an integrated 
and Distributed Tool, Service and Data Architecture built on Grid technologies [1] 
which is driven by the operating requirement to derive commercial and scientific 
benefit from distributed data assets.  The architecture has been developed to support 
the requirements of the BROADEN project (Business Resource Optimisation for 



Aftermarket and Design on Engineering Networks) project.  BROADEN is a follow- 
on to the DAME (Distributed Aircraft Maintenance Environment) Grid pilot project 
[2]. 

The basis of the VO in this application context is to provide a geographically 
distributed set of users with access to tools and distributed data to carry out 
collaborative fault diagnosis.  The characteristics of this specific VO are typical of 
many collaborative VO domains: 

Geographically distributed data – potentially in vast amounts. 
Geographically distributed users - not necessarily distributed to the same 
places as the data. 
Diverse system stakeholders with different roles and access rights. 
Legacy tools which are standalone but may need to interoperate with other 
tools. 
Disparate distributed diagnostic tools and services which must be brought 
together in a configurable workflow system. 
Security and Quality of Service as essential prerequisites 

1.1. The Condition Monitoring Application Domain  

Modern aero engines operate in highly demanding operational environments with 
extremely high reliability.  However, Data Systems & Solutions LLC and 
Rolls-Royce plc have shown that the adoption of advanced engine condition 
monitoring and diagnosis technology can reduce costs and flight delays through 
enhanced maintenance planning [3].  Such aspects are increasingly important to 
aircraft and engine suppliers where business models are based on Fleet Hour 
Agreements (FHA) and Total Care Packages (TCP).  Rolls-Royce has collaborated 
with Oxford University in the development of an advanced on-wing monitoring 
system called QUICK [4].  QUICK performs analysis of data derived from 
continuous monitoring of broadband engine vibration for individual engines.  Known 
conditions and situations can be determined automatically by QUICK and its 
associated Ground Support System (GSS).  Less well-known conditions (e.g. very 
early manifestations of problems) require the assistance of remote experts 
(Maintenance Analysts and Domain Experts) to interpret and analyse the data.  The 
remote expert may want to consider and review the current data, search and review 
historical data in detail and run various tools including simulations and signal 
processing tools in order to evaluate the situation.  Without a supporting diagnostic 
infrastructure, the process can be problematic because the data, services and experts 
are usually geographically dispersed and advanced technologies are required to 
manage, search and use the massive distributed data sets.  Each aircraft flight can 
produce up to 1 Gigabyte of data per engine, which, when scaled to the fleet level, 
represents a collection rate of the order of Terabytes of data per year.  The storage of 
this data also requires vast data repositories that may be distributed across many 
geographic and operational boundaries.  The aero-engine scenario is also typical of 
many other domains, for example, many areas of scientific research, healthcare, etc. 

156            Grid-Based Problem Solving Environments



2 The VO Requirements 

The diagnostic focus of the BROADEN and DAME projects has required 
investigation into two fundamental issues for the design of the VO: 

How to maximise the potential of Grid computing to address the 
complex data mining challenges in the condition monitoring application; 
How to maximise the potential of SOA to build and deploy a flexible 
and efficient collaborative workbench that integrates the required tool 
and services. 

This paper reports on both of these aspects; describing a highly distributed pattern 
matching architecture for Grid deployment and the use of the emerging Enterprise 
Service Bus (ESB) framework as a means to integrate and deploy a dynamic 
workbench for the VO collaboration.  The requirements to address both of the above 
issues will be explored in more detail, and will be followed by a detailed description 
of the solutions being developed. 

2.1. The Data Mining and Pattern Matching Problem 

A central challenge of the project has been to develop a data mining and pattern 
matching architecture within a grid framework that can scale to the terabytes of 
distributed data inherent within the application domain.   A fundamental aim of this 
work has been to devise a solution that separates the distributed nature of the 
problem from the searching/pattern matching problem. There has also been a 
requirement to keep the solution generic so that the solutions can be mapped into 
other grid applications requiring distributed search.   To this end the following broad 
objectives for the system were identified: 

Scalable. The system should be designed to operate on large data sets and 
utilise many remote resources efficiently. 
Flexible. It must be possible to add and remove resources and data assets 
from the system dynamically. 
Robust. The system should have high availability and maintain operational 
capability where one or more resources fail. As a consequence of this there 
should not be a central point of failure. 
Transparent. The distribution should be hidden from the end user.  
Efficient. The architecture should minimise the amount of data that is 
moved across the network infrastructure in achieving the data mining 
objectives. 
Parallel. Where searching at different locations provides concurrent 
operations, the architecture must support parallel execution. 
Storage Format Independent. It should be independent of the underlying 
database technology used to store the data repositories, and should operate 
transparently across a heterogeneous, distributed data archive facility. 
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The BROADEN system requires an architecture that can address these functional 
requirements in addition to meeting the operational demands imposed by the data 
management issues.  A central premise of the BROADEN system is that it must 
operate on geographically distributed data.  The scenario is that every time an 
aircraft lands, vibration and performance data is downloaded to the system from the 
QUICK monitoring units fitted to each engine. In future deployed systems, the 
volume of data downloadable from the QUICK system may be up to 1 GB per 
engine per flight.  Given the large volume of data and the rate at which it is 
produced, there is a need to consider how the data is managed. 

In order to illustrate the requirements of the aero-engine application, consider the 
following scenario.  Heathrow, with its two runways, is authorized to handle a 
maximum of 36 landings per hour.  Let us assume that on average half of the aircraft 
landing at Heathrow have four engines and the remaining half have two engines.  In 
future, if each engine downloads around 1 GB of data per flight, the system at 
Heathrow must be capable of dealing with a typical throughput of around 100 GB of 
raw engine data per hour, all of which must be processed and stored.  The data 
storage requirement alone for an operational day is, therefore, around 1 TB, with 
subsequent processing generating yet more data. 

With such a vast amount of data being produced a centralised repository may 
place unacceptable demands on data bandwidth and will not provide a scaleable 
solution. Small subsets of the data could be moved for processing and analysis 
purposes but this would be a solution only in some limited cases, as most services 
will need the ability to use full data sets.  Therefore, it is desirable to store data in 
distributed nodes and to distribute the services which act on the data actually with 
the data. The architecture should permit the use of distributed nodes to store data 
(and services), assuming other issues such as security, etc. are satisfied. 

2.2.  The Workbench Requirements   

One of the challenges, to date, of building and deploying VO’s based on SOA, is 
that of systems integration. Toolkits are available, such as the Globus toolkit [5], for 
developing and deploying web-services. However, these provide little support for the 
integration of the end-to-end services at the VO level within workbench or similar 
collaborative working environments.  Within the DAME project a major part of the 
project effort was expended on the design and integration of the system portal that 
exposed tools and services to the diverse end-users.  Although the final demonstrator 
was effective, it was a bespoke solution and not easily scaled to the needs of 
industrial deployment.  Some of the challenges that have to be addressed within the 
BROADEN project lie with the nature of the tools and services that need to be 
deployed within the diagnostic process.  A major issue has been the requirement to 
allow users to add tools to the system with the minimum of change to the tools. 
However, the characteristics of the tools being deployed in the domain means that 
they are often not easily integrated within a VO.  For example, in many cases: 

Tools are designed to operate standalone - this is typical of legacy tools; 
Tools not designed to interoperate with other tools - again this is typical of 
legacy tools; 
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Tools have thick desktop clients that are not efficiently deployed as a web-
service

Similar diverse issues are found when analysing the nature of the web-services. The 
services issues can be summarised as: 

Services may be centralised - this is typical in legacy systems; 
Service may be distributed - particularly located near the data sources; 
Services may be autonomous e.g. data input services triggered by data 
arrival;
Services will need to be composed as links in a workflow 

The VO architecture should accommodate all the above issues, but do so in a way 
that supports flexibility and reconfiguration.  The architecture should allow all the 
above tool types to interact with one another as necessary, with a minimum of 
change both to the tools and the system architecture, whilst still addressing the need 
for virtualisation and supporting many geographically dispersed users.  In the 
following sections the data mining and pattern matching Grid solution is described, 
followed by an analysis of the use of ESB as the integration framework for the VO. 

3 The Pattern-Matching SOA Architecture 

This section introduces a service orientated architecture for deploying pattern 
matching and/or search functionality against data distributed over many 
geographically separate locations. This is based around three primary web service 
enabled components: 

A data-management system for handling data arriving from an aircraft or 
other data asset; 
A distributed query system; 
A virtual data archiving service. 

The discussion will focus on a description of the architecture for the distributed 
query service and the virtual data archiving service. At the heart of the distributed 
query process are a range of web services that encompass the Pattern Match 
Controller (PMC), the Pattern Match Service (PMS) and the Storage Request Broker 
(SRB).

The distributed concepts within BROADEN dictate that the PMC and PMS 
services are hosted remotely and replicated at the diverse data repositories (e.g. at 
each potential airport where data is downloaded and stored).  These services and the 
data repository form a ‘Data Node’ within the architecture.  For the purpose of this 
architecture definition, each node will be treated as a single resource. In practise, it is 
likely that each node will utilise many resources, for example, high performance 
clusters, tape archives, desktop PCs and laptops. The key assumption made is that 
the communication bandwidth available between resources at a single node is 
significantly higher than that available between the distributed nodes. The role of 
each service will be outlined in the following sections. 
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3.1. The Pattern Match Controller and Search Process 

The Pattern Match Controller (PMC) is the front-end service for distributed search 
operations.  The PMC controls the search process at each node and provides all 
communication between nodes. An instance of the PMC resides at each node.  

Each PMC: 
Has a catalogue of all other nodes in the system, to ensure that search 
requests can be sent to all nodes. 
Has access to a local Pattern Matching Service (PMS), which it can instruct 
to carry out searches. 
Manages results for all ‘active’ searches at its own node. 

Pattern match searches can be initiated either from an end-user or from automatic 
workflows in the task brokerage system.  In both cases, a client service (an example 
application providing a GUI is detailed in [6]) communicates, via web service 
protocols, with its nearest PMC service to request a search.  The query takes the form 
of a request to match a region of interest against the stored fleet data at each node. 
The PMC node that receives the request becomes the ‘master’ node for that unique 
search task. All other nodes in the system are referred to as ‘slaves’ for that search. 

A search scenario is shown in Figure 1. Numbered arrows show communication 
between services. The exact order of some communication is dependent upon when 
individual pattern matching services complete their search. 

1. A client delivers a search request to a PMC. This becomes the master PMC 
for this search, and returns a unique identifier for this search that the client 
can use in later communication. 

2. The master PMC passes the search request to all available slave PMCs. 
3. All PMCs (including the master) pass the search request to their local 

Pattern Matching Service. At each node searching commences. 
4. At each node, as the Pattern Matching Service completes its search and 

passes the result to its local PMC. Pattern Matching Services then clean up, 
discarding the search results. At the master node, the result is merged into 
the overall result set. 

5. Slave PMCs pass the results to the master PMC. The slave PMCs can now 
clean up and discard the search results. The master PMC merges the new 
results into the overall result set as they arrive. 

6. The client makes a request for the results. The master PMC returns the 
complete results with additional information informing the client that the 
search is complete. 

The client can request the current search results at any time. The master PMC 
returns the current result set with additional information such as how many nodes 
have completed their search task. Typically, a client will request results at regular 
intervals until the search is finished. 

One of the stated aims was to build a generic framework for diagnostics.  An API 
has been designed to support this objective; it does not contain any domain specific 
data types or structures. The API only specifies how components should interact with 
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the pattern match architecture. This means that application specific components can 
be built and configured as required by particular implementations to work with the 
PMC. The PMC receives domain specific data as part of a search request, but does 
not need to understand it, just how to deliver it to the appropriate services. The PMC 
is a re-usable component appropriate for distributing search requests regardless of 
the problem domain. 

Each node can behave as a completely stand-alone pattern matching entity, 
capable of matching against data stored at its location. As new nodes are added, each 
PMC maintains a list (or catalogue) of all the nodes within the system. For each 
node, the IP address of the PMC at that node is the only information required. If a 
node fails, its entry is kept in each node list maintained by each PMC. This allows 
search results to reflect the fact that the entire dataset is not being searched against. If 
a node is to be permanently removed, a de-registration process is invoked. 

These architectural features address the requirements for scalable, efficient and 
flexible functionality.  Any number of nodes can be supported, each operates 
independently, and searches are carried out asynchronously.   The PMC passes 
search requests to and from other services, without requiring any understanding of 
the nature of the search request. Any data that can be contained within the search 
request structure can be supplied as a search request. Achieving, appropriate results 
depends upon providing PMS implementations that can understand and process the 
request. 

Fig.1. The communication required to complete a typical search process 
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3.2. Pattern Match Service 

The Pattern Matching Service is responsible for performing the search across the 
data held at a node. This means that the pattern-matching process is handled entirely 
independently to the search requesting mechanism.  This provides for flexibility in 
the architecture, and does not constrain the query process to any particular pattern-
matching algorithm; the PMS can deploy any available pattern matching and/or 
indexing algorithms as appropriate. It receives search requests from its ‘local’ PMC 
and upon completion of the search sends the results back to the PMC. At each node 
the Pattern Matching Service can access the data stored there without consideration 
of data stored at other nodes. This feature addresses the requirement for a scalable 
and concurrent system by permitting the query process to be carried out as an 
inherently parallel operation across all nodes.  

3.3. Example Query Process  

To provide an example of the functionality a PMS might perform we describe the 
search process in the BROADEN system; matching vibration patterns against the 
historical flight data. The aim is to find vibration patterns that are ‘similar’ to the 
anomaly just observed (the ‘query’ pattern, q ). The problem can be stated as finding 
a set of time series sub-sequences R .

qxdXxR ,

 is the maximum distance (using an appropriate metric) that a vibration pattern can 
be from the query and be considered a match. This is an instance of the ‘query by 
content’ or ‘query by example’ problem, a significant area of data mining research 
[7, 8, 9]. Where  is varied to return a set of a fixed number ( k ) of matches in R ,
this is referred to as a k-nearest neighbour (k-NN) search. 

Within the BROADEN system this search algorithm is implemented using the 
AURA [10] technology, which provides high performance neural network based 
pattern matching.  AURA is pivotal to the requirements for meeting search requests 
within tight operational time constraints.  It is a highly parallelised and massively 
scalable search engine that can implement the k-nearest neighbour algorithm 
extremely efficiently on massive datasets.  However, as already stated, the PMS 
architecture is algorithm independent and the AURA pattern match engine can easily 
be replaced or accompanied by other pattern matching algorithms as required for the 
relevant data set.  Simple API’s allow any algorithm to be made available to the 
PMS if deployed as a standard web-service. 

3.4. PMS Data Transfer 

Passing large volumes of data (that may not be required) around the system is 
likely to increase search times and/or bandwidth requirements. To reduce the volume 
of network traffic generated, the actual data for each match is not passed between 
services. Details for each match include an identifier that specifies the location of the 
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data for that result. If a client wishes to examine a result it must fetch the data, which 
could be located at any node in the system. Clients should be able to access/retrieve 
result data through a single service, without concern for which node the data is 
located at, i.e. treating the dataset as a single entity at a single location. 

A data management system is required that will provide a single logical view to 
the distributed dataset and allow clients to access data from the same service, 
regardless of location. This data management service is responsible for ‘looking up’ 
the location of the data and fetching it.  

3.5. Storage Resource Broker (SRB) 

The Storage Request Broker [11] was selected as the storage mechanism to 
provide a virtual file indexing system at each node within the system. SRB is a tool 
for managing distributed storage resources, ranging from large disc arrays to tape 
backup systems. Files are indexed via SRB and can then be referenced by logical file 
handles that require no knowledge of where the file physically exists. A Meta-data 
Catalogue (MCAT) is maintained which maps logical handles to physical file 
locations. Additional system specified meta-data can be added to each record. This 
means that the catalogue can be queried in a data centric way, e.g. engine serial 
number and flight date/number, or via some characteristic of the data, rather than in a 
location centric fashion. When data is requested from storage, it is delivered via 
parallel IP streams, to maximise network through-put, using protocols provided by 
SRB.  SRB can operate in heterogeneous environments and in many different 
configurations from completely stand-alone, such as one disc resource, one SRB 
server and one MCAT, to completely distributed with many resources, many SRB 
servers and completely federated MCATs.  

The BROADEN system currently utilises a single MCAT but the architecture 
described here could be deployed with an MCAT at each node. In this configuration 
a user could query their local SRB system and yet work with files that are hosted 
remotely in a number of diverse database/file systems.  The arrival of aircraft 
vibration data is simulated at each node; new data is stored directly into SRB on a 
local resource. Each location stores engine data under a logical file structure based 
on node location, engine type, engine serial number and flight information. Data may 
be made visible to any user or client regardless of their location. Pattern Matching 
Services access local data using SRB, querying the SRB MCAT to locate all data at 
that node. 

The client application can access SRB directly to fetch the data for individual 
matches as required. This means that the client application does not need to know, or 
be concerned with where the data is actually located. SRB’s logical view allows 
PMCs and pattern match services to operate on a distributed data set only accessing 
local data, while other BROADEN services can treat the data as if held at a central 
repository. 
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4 The Generic Distributed Tool, Service and Data Architecture 

The discussion has presented an architecture that permits data mining and pattern 
matching queries to be carried out on highly distributed data, and on data that could 
potentially be managed in a highly heterogeneous range of database technologies.  
The architecture is generic in that the services are not constrained to any particular 
search task or any set of search algorithms.  Considerable efforts have been 
expended to make the architecture robust and scalable, and to separate out the 
mechanisms for requesting and managing the results of queries from the process of 
pattern matching through the diverse data repositories.  It has been demonstrated and 
deployed in a real-world application domain and found to be highly effective in 
managing the problems associated with searching distributed data assets.  The 
following sections describe how this architecture is deployed at the heart of the VO 
system built around an ESB enabled workbench/portal. 

The issues relating to the difficulties experienced with integrating services into a 
SOA to facilitate a Virtual Organisation were described earlier.  The lack of tool 
support for integration was identified.  This issue is now being addressed within the 
developers’ community and one of the emerging frameworks for building SOA’s is 
the Enterprise Service Bus [12] concept.  The purpose of an ESB is to provide a 
communications ‘bus’, based on XML web-service standards, that facilitates 
application and process integration by providing distributed processing, intelligent 
routing, security, and dynamic data transformation. All of these services are essential 
elements of an end-to-end SOA, and by providing them in a standardised way as part 
of an infrastructure it avoids the overhead of system developers having to implement 
these in a bespoke manner.  The other advantages of an ESB approach, which make 
it amenable to adoption in the BROADEN VO, are that it is distributed and that it is 
message based, to provide loose coupling between services.   An instance of an ESB 
may be used within the architecture as a simple messaging and translation 
mechanism between the tools of the system.  Tools are able to register with the ESB 
providing information about their type of service, their functions and the respective 
data formats.  Translation specifications are provided to the ESB in a standard format 
and the ESB provides translation facilities on a tool pair basis and even on a function 
pair basis, if necessary. 

The ESB keeps a registry of all connected tools, and routes messages between 
tools and translator components.  Tools, once registered, might become unavailable, 
move to different locations or change their data formats without informing the ESB.  
Therefore a method of continuous verification and notification of each service will 
also be implemented. 

Workflow, for use in the Global Workflow Manager, can be expressed in 
BPEL4WS and in order to make the update of workflows more user-friendly, a GUI 
will be included in the Workbench. 

All of these properties have led to its adoption as the proposed integration 
framework for the BROADEN Virtual Organisation.  This VO provides support to a 
diverse range of distributed end-users through access to a workbench.  This 
workbench is being developed as a browser-based portal (for ease of deployment) 
that sits on top of an ESB architecture which orchestrates and integrates the 
underlying diagnostic tools and services. 
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Figure 2 provides an overview of the generic architecture that is being developed 
around the ESB.  The elements shown are: 

The Graphics and Visualisation Suites which contain a set of tools at a 
particular user location. 
The Enterprise Service Bus to enable tool interactions. 
The distributed nodes which encapsulate the data and high performance 
services (see figure 3). 
The global workflow manager which provides service orchestration on 
demand from the individual users or as an automatic activity in an event 
driven mode. 

Figure 3 shows the generic overview of the simplified architecture: 

The Pattern Match Controller (PMC) is a distributed component, which 
manages the distribution of service requests and collection and 
aggregation of processed results. 
The Processing Services act on local data and provide high performance 
search, signal extraction facilities, etc. 
Distributed Data Management provides access to local and distributed 
data through Storage Request Broker abstraction mechanisms. 
The Local Workflow Manager Management provides automatic and 
requested workflows to be enacted with a single distributed node.  A 
local workflow may also be part of a global workflow controlled by the 
global workflow manager. 
The Local Resource Broker manages selection of local resources in 
keeping with specified Service Level Agreements (SLAs). 
Data Loading Services populate the local data stores in each node.  
These services may also perform other tasks such as data integrity 
checking, error correction, etc. on input data. 
Databases / Data stores are provided for each type of data resident in the 
node. 

The capabilities of PMC and ESB are complementary; one provides flexibility at 
the cost of performance, the other reduces the flexibility but gives a gain in 
performance. An analysis is underway to measure these issues within the 
BROADEN application. We see the eventual possibility of migrating the functional 
aspects of ESB that are determined as essential into the PMC, once these have 
become clear through trial deployment. 
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Fig.2. Overview of the Generic Tool, Service and Data Architecture 

Fig.3. Overview of a Generic Distributed Service and Data Node 
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Figure 4 shows there are a number of tools that communicate with each other, 
ranging from visualisation services, data analysis, data management and workflow 
orchestration.  The visualisation tools provided are: 

Case Based Reasoning Viewer [13] including Performance Curve Test 
(PCT) Viewers. 
Signal Data Explorer (SDE) is a visualisation tool used to view vibration 
spectral and extracted time series data [6, 14] and performance data.  It also 
acts as the front end to the high performance pattern matching services. 
QUICK Data Viewer is a visualisation tool which allows a user to view 
spectral data, extracted features and events occurred [4] 

The data repository at each node is responsible for storing all raw engine data along 
with any extracted and AURA encoded data.  Each node is populated with: 

The Pattern Match Service (PMS) which is based on Advanced Uncertain 
Reasoning Architecture technology [10] and provides high performance 
pattern matching for use with the SDE or in workflows. 
The QUICK Feature Provider service which provides features and events to 
a client such as the QUICK Data Viewer. 
The XTO (eXtract Tracked Order) service which extract specific time series 
from the raw spectral vibration data. 
The Data Orchestrator is the Data Loading Service and is responsible for 
“cleaning” and storing all raw engine data. 

Also included in the BROADEN architecture is a centralised CBR Engine and 
Knowledge Base [13]. 

The development carried out to date suggests that ESB provides an appropriate 
framework in which to deploy and develop the VO for the application domain, in 
that all of the above diverse services can be readily integrated into the architecture. 
The generic architecture has been developed to be application neutral.  It will be 
implemented for the BROADEN application during the course of the project. This 
will allow us to assess the strengths and weaknesses of PMC and ESB for the task. 
Future work will include: 

The testing and demonstration of the generic architecture in the BROADEN 
application domain. 
The testing and demonstration of the generic architecture in other 
application domains. 
The introduction of fault tolerance as appropriate (inter and intra node). 
The exploration of fault tolerance techniques within the ESB. 

5 Conclusions

The paper has described the development of a VO to support distributed 
diagnostics for condition health monitoring applications.  For this VO domain, as for 
many other application domains, the issues of distributed data management are 
central.  A distributed SOA architecture has been presented that is being deployed 
within an industrial pilot study within the BROADEN project.  The architecture is 
generic and will support a diverse range of data analysis methods for VO’s.  As an 
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example, the methods are being redeployed within the context of a UK wide e-
Science project to develop a collaborative working environment and data arching 
system for neural spike train data (the CARMEN project).  Lessons learnt from the 
DAME project in regard to the development of a workbench to support the VO have 
been carried forward and have motivated the adoption of the Enterprise Service Bus 
as an integration framework.  This is contributing to the development of an 
architecture that is flexible, configurable and based on common standards that will 
encourage reuse. 

This work builds on the tools and services developed during the DAME project.  
A generic architecture has been developed, which integrates: 

Geographically distributed nodes containing data repositories and 
services. 
Geographically distributed users. 
Legacy Tools. 
Purpose designed tools. 

It is a Grid based architecture used to manage the vast, distributed, data 
repositories of aero-engine health-monitoring data.  In this paper we have focused on 
the use of a generic architecture to enable the general concept to be in other 
application areas and with varying degrees of legacy systems and designs. The 
middleware elements are generic in nature and can be widely deployed in any 
application domain requiring distributed tools and services and data repositories. 
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Q&A – Tom Jackson 

Questioner: Dennis Gannon 
Can the system continuously monitor the data searching for faults and 
alerting users of possible problems? Is this software accessible? Is it open 
source? 

Tom Jackson 
Yes, the system has workflow scripts that automatically scan the data for 
faults as it arrives at the data repository.  If faults are found an alert is sent to 
a diagnostic engineer. 

The PMC middleware stack has been developed within the UK e-Science 
programme and is open source. 

Questioner: Bill Applebe 
(Remark: this is very useful for clinical DB’s that cannot be copied – only 
subset queries legal) How is the client side implemented? 

Tom Jackson 
There is a standardized web-service (SOAP) client side API that can be 
easily integrated into user application software. 

Questioner: Anne Trefethen 
1. How does the evolving OGSA standard affect the infrastructure you 

are using? 
2. Security is a major issue for industry use of “grid” – have you solved 

these issues? 

Tom Jackson 
Answer (1): We restrict ourselves to web-service standards for the current 
implementation, to avoid issues with evolving OGSA standards. 

Answer(2): We have addressed them within the context of security measures 
within the available GT4 toolkits, in that the services can ask for 
authentication and authorization via X509 certificates. 

Questioner: Brian Smith 
How do you handle false pattern matches? Are they frequent and how do 
they impact the acceptance of your approach? 

Tom Jackson 
False positives need to be avoided as far as possible; they can prove costly 
within the maintenance process.  We are still validating the algorithms to 



determine how serious or frequent this may be. There is still a relative lack of 
fault data as the systems do not go live on commercial aircraft until late 2006. 



Tuesday AM Panel Discussion 

Panel
 Boyana Norris 
 Jem Treadwell 
 Tom Jackson 

Questioner: Brian Smith 
Quality of Service (QoS) typically has metrics associated with it. Also 
interactions back to the requestor after the analyzer discovers what is 
possible. Do you see these metrics being developed and interaction being 
supported? 

Tom Jackson 
Yes, we are working on intelligent QoS systems that permit analysis of 
operational conditions and dynamic adaptation to fit, where possible, the 
constraints of the user QoS profile. 

Questioner: Brian Smith 
Are other areas of aircraft monitoring possible and being investigated? 

Tom Jackson 
Yes, we have had some talks with other airline company’s about the use of 
the technology for airframe monitoring, as one example. 

Questioner: Anne Trefethen 
Does the OGSA take quality of service into account? 

Tom Jackson 
There is a lot of activity within GGF addressing the issues relating to QoS, 
and it is a high priority issue. 

Boyana Norris 
In the case of CQoS, continuous close interaction with an ever-expanding 
number of application domains is a priority and directly affects the design and 
implementation of the interfaces and middleware component infrastructure.  

Jem Treadwell 
Yes, QoS is addressed in the Self-Management capability, and the GGF’s 
GRAAP working group is developing the WS-Agreement specification, which 
can be used to establish service-level agreements.  Note that there is no 
activity on self-management within OGSA at the moment, as we focus on the 
more basic capabilities.  



Questioner: Anne Trefethen 
Are we convinced that service architectures of the sort being discussed are 
going to deliver across a range of applications? 

Tom Jackson 
The major IT companies, such as IBM and Sun, continue to back the SOA 
model as the basis for systems integration and deployment.  The model is 
becoming increasingly mature and accepted across a broad range of 
disciplines. Emerging technologies such as Enterprise Service Bus (ESB) 
make the SOA approach even more valid as they enhance the integration 
process. 

Jem Treadwell 
We (HP) see service-oriented architecture being used by customer and 
partner organizations in a wide range of markets, both for new applications 
and in making legacy applications more easily available. As an architectural 
principle it just makes sense, and its use is not restricted to applications 
based on Web services. 

Questioner: Anne Trefethen 
Are the developments of these underlying service architectures sufficiently 
connected to the applications? 

Boyana Norris 
As I mentioned in the answer to the previous question, the CQoS effort is 
considering a broad range of applications in all the stages of the design and 
implementation of the interfaces and middleware component infrastructure. 

Questioner: Brian Ford 
As you prepare to commercialize this system, are there particular problems 
rooted in its grid nature that make the activity more difficult, or even not 
possible? 

Tom Jackson 
The system is currently being evaluated for commercial deployment.  The 
academic partners have spin out companies that provide a commercial route 
for deployment of the software.  The fact that it is Grid based does not 
appear to pose any problems with commercialization at this stage.  

Questioner: Brian Ford 
How do you establish the effectiveness of this technical approach in 
commercial environments? How do you establish the value to concerns such 
as the national health service, oil industry etc? The value-for-money for the 
organization is not always clear. 

Tom Jackson 



This is the basis for the current DTI BROADEN project.  The project concepts 
were developed under UK e-Science programme, DAME, but the commercial 
scalability and deployment issues are being addressed within BROADEN in 
partnership with Rolls-Royce IT providers, EDS. 

Questioner: Mary Thomas 
What is the status/progress of speeding up security (GSI) protocols? 

Jem Treadwell 
While there are a number of groups working on security within GGF (now 
OGF), I’m not sufficiently involved to comment on what they’re doing, or their 
progress.  However, I think this question relates to Globus rather than OGSA 
or GGF, and we need to be clear that Globus and OGSA are not the same 
thing: the Globus Toolkit is a grid middleware implementation.  [Thanks to 
Keith Jackson, who supplied a response on behalf of the Globus 
development team.] 
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Abstract. Wrapping parallel programs or parallel numerical library functions 
into software components and using them as computation services in service-
oriented programming presents a method of delivering powerful computation 
capabilities of multi-processor supercomputers to the application developers 
who may only familiar with their desk-top or hand-held computing 
environment. These parallel computation services on computer clusters are 
used as ordinary software components on the desktop programming 
environment with their internal parallel or distributed characteristics hidden 
from the users. In order to use the parallel scientific computation applications 
and libraries as the software components conveniently in the development of 
new applications, a parallel computation service model and the runtime system 
that support this model on computer clusters are presented and some design 
and implementation issues are discussed in this article. 

1 Introduction 

Parallel and distributed computing on computer clusters is an effective way to speed 
up large-scale scientific computations. However, it is more difficult to build up 
applications on such environment than that on a sequential machine. A traditional 
way of developing a large application on such environment usually requires a great 
deal of tight collaboration between experts in computer architecture, algorithm 
design and application area and leads to a monolithic program. Although there are 
many successful sophisticated parallel scientific libraries and packages available 
such as PETSC [1, 2], SCALAPACK [3] and BLACS [4] for application developers,
it still requires the application developers to have certain degree of expertise in 
programming on such parallel/distributed computing environment. When using these 

 This work is supported by the National High-Tech Research and Development Plan of China 
(No.2003AA1Z2090), and by Basic Research Foundation of Tsinghua National Laboratory 
for Information Science and Technology. 



libraries, one usually needs to know how to initiate such environment in the code 
before using the library functions and know how to compile his/her own code with 
the libraries on the parallel computer and to start the application using some job and 
resource management tools. The debugging of parallel program on a computer 
cluster is even more difficult.  For those scientists and engineers who are not familiar 
with parallel/distributed programming on computer clusters, these difficulties could 
be a serious obstacle for development of applications requiring high performance 
computation. 

Service-oriented programming is a way to ease the difficulties mentioned. It 
separates the development of computation services components from the 
development of applications composed from the services. The development of 
computation services put the efforts on the design and implementation of algorithms 
of the services to make them efficient and reliable on their runtime environment, 
while the development of applications using selected services would focus the efforts 
on the business logic and the workflow of the applications. 

In this paper, THCORE, a component model and its runtime systems are 
introduced. It unifies the interface of components running on sequential and 
parallel/distributed computers. The implementation differences between the 
components on sequential and parallel/distributed machines are encapsulated inside 
the component and managed by the corresponding component runtime systems. In 
this model, application developers do not need to have knowledge of parallel 
programming but still could use the computation power of parallel computers. The 
parallel computation services implemented as the THCORE components are used to 
compose the application in the same way as other components. The well developed 
and frequently used mathematics libraries, legacy packages, and even applications 
could be wrapped into components to provide computation services for other 
applications. The detail of the parallel computational service model of THCORE and 
its runtime system on computer clusters are presented. 

The rest of the paper is organized as the following. An overview of THCORE 
and other related works are presented in section 2. The parallel computing service 
component model will be introduced in Section 3. The component runtime system 
for computer clusters is introduced and discussed in Section 4. In Section 5 the 
performance issues is discussed. Some experiment results that evaluate the overhead 
of componentization is shown. Related work will be mentioned in Section 6. The last 
section gives the conclusion and direction of future work. 

2 Overview of THCORE and Related Work 

THCORE is designed as a lightweight, efficient and reflective component platform 
for pervasive computing. It is written in C for the best performance and minimum 
memory footprint. Its component model adopts the component object model of 
Microsoft’s COM/DCOM with some new extensions to suit the pervasive computing 
environment that includes as well as embedded systems and high performance 
computer systems. THCORE supports the binary level interoperability protocol, 
transparent local/remote invocations as in COM/DCOM. It deploys a standard 
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runtime substrate that manages the execution context of components. For example, a 
component can be instantiated in different running spaces: it can be created in the 
same process of application for efficiency, or be created outside the application 
process for system isolation, or it could even be created on remote machine 
connected via network.  

Multi-level reflection is one of the new features brought into THCORE 
component model. It provides the access to both interface-level and component-level 
Meta data. Interface-level Meta data contains the definition of interfaces, functions 
and parameters. It provides the finest grain of self-description information of the 
system, and it is obtained by using the IMetaInterface interface of THCORE 
component. With the help of this, middleware can dynamically load components and 
invoke the method without generating accessing code. Component-level Meta data is 
used to describe a component’s requirement of execution context (such as hardware 
and OS requirement). The Meta data in this level also contains the information of the 
reliance of dependency that one component lies on others. Component-level Meta 
data can be accessed by ICompMetaInterface interface of THCORE component. This 
reflection feature is very useful in supporting adaptive programming.   

Some system services are provided for programming with THCORE model and 
platform, including event service, cache service and parallel computing service. 
Some THCORE related research projects have been reported. PURPLE [12, 13] is a 
component-based reflective middleware for pervasive computing which is built upon 
THCORE platform. It provides support for adaptive context-aware programming. 
The structural and functional modules that compose the middleware platform are 
THCORE components. THAOP [14] is a lightweight and flexible Aspect Oriented 
Programming Framework based on THCORE component platform. It provides 
support for component-level AOP. FT_THCORE [15] is a fault tolerant extension of 
THCORE specification and platform. It implements the easy component replication 
and voting strategy so that it supports N-Version Programming.  

As the applications in pervasive computing usually involve several different 
computation environments ranging from resource limited mobile/handheld devices to 
powerful multi-processor supercomputers, THCORE is design to provide the 
interoperability between computation components (services) on different 
environments. As it is lightweight, THCORE can be installed on the resource limited 
devices. The discussion of the extension on COM/DCOM for embedded devices will 
not be discussed in this paper. But, the model adopted from COM/DCOM may not 
be viable for the parallel program directly. There are two design issues need to be 
considered. First, we wish to hide parallel programming from the programming with 
THCORE. Second, we allow the services components to be implemented by parallel 
program and executed on parallel/distributed computer systems. The details of the 
design and implementation for the extension of component model for parallel 
computation services and the correspondent runtime system on the computer clusters 
are discussed in section 3 and 4.  

It is not a new topic to hide the parallel programming from the development of 
applications while the computation power from parallel programming is used for the 
execution of the application. Take Matlab for example. It is well known that Matlab 
is a convenient tool for engineering computation. It does not introduce explicit 
parallel computation concept into its programming. But it may need large amount of 
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computation power so much that the parallel computing may become necessary. 
Researchers have presented many methods to make parallel Matlab. A survey was 
performed [9] and 27 parallel MATLAB projects, such as MatPar, MatLab*P and so 
on are found through extensive web searching. The approaches to make MATLAB 
parallel are different: some compile MATLAB scripts into parallel native code; some 
provide a parallel backend to MATLAB, using MATLAB as a graphical front-end; 
and some others coordinate multiple MATLAB processes to work in parallel [10]. 
Take Matpar [5] for example. Matpar is a software program in C/S model that allows 
MATLAB users to take advantage of a parallel computer. Some calls to certain built-
in MATLAB functions are replaced with calls to Matpar functions on the client side. 
The code of Matpar function calls in turn initiates a session on a parallel computer. 
The parallel code uses parallel mathematical libraries to produce a solution that is 
sent back to the calling program. Because of the limitation of the model, Matpar is 
difficult to be reused to build other applications. And it is difficult for Matpar to deal 
with different software and hardware environment. As the compiler is special 
designed for Matpar and Matpar is based on some parallel mathematics libraries, it is 
quite difficult to expand the functions that Matpar is supporting. 

As a component model designed specifically for high performance computing, 
CCA (Common Component Architecture) [11] is better known in the HPC 
community. In CCA, components interact with each other and with a specific 
framework implementation through standard application programming interfaces 
(APIs). Each component can define its inputs and outputs by using a scientific 
interface definition language (SIDL); these definitions can be deposited in and 
retrieved from a repository by using a CCA Repository API. The goal of CCA is to 
gain abstractions that capture high-performance concepts in component architectures, 
which can enable more efficient interactions between SPMD programs. There are 
also tools associated with CCA to help with decomposition of legacy code into CCA 
components for reuse. Although the goal of CCA is also to foster the component-
oriented programming, there are two main differences from THCORE: the first is the 
user knowledge requirement. To use CCA, one needs to have certain knowledge in 
parallel programming. The second is in the way of component composition. CCA 
allows parallel component to be more tightly connected because the interface 
contains the information of “parallelism” while THCORE hide parallelism 
completely from the interface. Therefore, CCA is more suitable for the development 
of component based parallel applications while THCORE is better for the application 
deployed on the heterogeneous computing environment such as in pervasive 
computing scenarios. 

3 The Model of the Parallel Computation Services 

One of the characteristics of service-oriented programming is the separation of 
service interface from its implementation. A client requests a computation service by 
invoking its interface. The implementation of the computation service, whether in 
sequential or parallel program, is transparent to the user. To the client of the service, 
interface will take the input from the client and return the results of the computation 
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to the client all through one “port”. This matches with the way of human thinking 
and it is easy for implementation of business logic. On the other hand, single 
processor may not provide enough power for the computation so that multi-processor 
computers are introduced into the application. It is a common solution for the fast 
computation. In such case, we wish a service could be running on multi-processor 
machine. However, as the execution of a parallel program are quite different from 
that of a sequential program, the structure of a parallel service on a computer cluster 
is different from its counterpart on desktop computers and other hand-held devices. 

The design of the model for the parallel computation services on computer 
clusters takes two factors into consideration. First, a parallel program is most likely 
to have “sequential” entrance though more parameters may be required to start a 
parallel execution. By “sequential” entrance, we mean that the program has single 
starting point, and its input and output data are in a whole, rather than in the form of 
partitioned pieces. Therefore, it is viable to keep the interface of parallel computation 
services the same as the interface of other sequential computation services with a few 
extra parameters. In addition, all parallel computation service should have a main 
process/thread to act as a “driver” and entrance of the parallel program. It is 
responsible for partition, distribution and aggregation of data structures for parallel 
computation if necessary. Second, as the services are executed on multiprocessor 
computer systems, in general, the number of processors to be used should be 
specified in advance by someone in someway, and the mapping from program’s 
logic process to the physical processors needs to be performed. To run a parallel 
program, one needs to submit the job via job management tool such as PBS [16]. The 
number of processors and other execution parameters are submitted to the job 
manager system and the manager will arrange the resources for the execution. 

Fig. 1. Parallel Computation Service Model 

The model of parallel computation service is shown in Figure 1. A service is 
made of two parts: service deputy and service entity. The service deputy is a 
sequential code. It acts as if it is the implementation of the service to the client, but in 
fact, it is only a “driver” and a “wrapper” of the parallel computation program. The 
service entity is a parallel code that implements the computation function and will 
execute on parallel computers or computer clusters in our case. The service deputy 
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receives the request from the clients and analyses the request to generate the 
information for the creation of the parallel tasks of the computation function 
including the task partition, data partition and distribution, synchronization 
mechanism of the algorithm, etc. The service deputy itself does not implement any 
parallel computing. The service entity receives the information from the service 
deputy and implements the parallel computation function. The input data sent from 
the client is received by the service deputy and then forwarded to the service entity 
accordingly. On return, the output data of the service moves on the same path from 
opposite direction to the client. 

The course of making a parallel computation service is similar to that of making 
a normal component in THCORE except that the code of the parallel computation 
function has to be separated from the interface. It starts with the description of 
interface using IDL (interface definition language). The compiler of IDL will then 
generate the code of the interface. The interface provides an abstraction of its 
implementation and serves as the connection point between its client and the service 
it provides. In developing normal component, one could insert the code of the 
component function into the interface code. But in the parallel computation service 
case, the parallel computation function has to be separated. As the service deputy is 
actually only a “driver” and a “wrapper” of the parallel program, what contained in it 
is the information regarding the function identifiers, the code of creating multiple 
tasks and transferring data. Therefore, it can be generated by IDL compiler 
automatically as part of the interface code. Some sequential part of the parallel 
computation function, such as the pre/post processing steps, can be inserted into the 
interface code as the part of the service deputy if it is desired. The development of 
the service entity is similar to the development of a parallel program. The only 
difference is that the implementation of the parallel computation function has to be 
registered with the component runtime system as the interface. This is the result of 
the separation of sequential and parallel part of implementation. 

The limitation of this model is that it does not provide the parallel interface for 
the composition of parallel computation services. It can be seen that the data in and 
out from the service component are packed into one single stream while the internal 
presentation is distributed for the parallel/distributed computation. If two parallel 
computation services are requested consecutively, the output data of the first service 
will be redistributed when it is used as the input data of the second services even 
though both services have the same internal distribution of the data. The time spent 
in the data movement would cause a serious problem in performance. The 
performance issues will be discussed in section 5. 

4 The Service Runtime on Computer Clusters 

For supporting the execution of the parallel computation service on computer 
clusters described in the previous section, a service runtime system is designed and 
implemented. This runtime system should have the following functions: 

Service activation: As the same as the function of THCORE runtimes 
on desktop computers and handheld devices, it should provide runtime 

184            Grid-Based Problem Solving Environments



support for the service. When a service interface is invoked by a client, the 
runtime system should be able to activate the code, including both service 
deputy and service entity, to run on the cluster. It serves as a service 
container and connects the deputy and entity parts of the service.  
Resource management: As the amount of computation in a service may 
vary with the input parameters, such as the problem size and accuracy of 
the solution, the resource of the cluster, such as the number of processors, 
may vary from execution to execution. As an advanced function, the 
system should have the capability to allocate and manage the resource 
efficiently. It should dispatch the computation task to the processors 
appropriately in order to make good use of all the processors in the cluster 
for load-balance and better efficiency. In some sense, the runtime system 
performs the function of job manager like PBS and bears more 
responsibility for the success of execution of a parallel computation 
service than the operating system of the machine. 

4.1 Architecture Overview 

Fig. 2. Architecture of the service runtime system on computer clusters 

The architecture of the runtime system for computer clusters is shown in Figure 2. In 
addition to the function of service activation, as THCORE runtime on desktops and 
handheld devices, it has a task manager module that performs the function of 
resource manager. It takes the information regarding the parallel computation 
characteristics of the service entity, such as the number of tasks to be created, from 
the service deputy, and then creates tasks and allocates the processors for the parallel 
tasks accordingly. When a client requests a parallel computation service by invokes 
its interface, the runtime system activated the interface code and the service deputy, a 
message of parallel computation task request is sent by the deputy to the task 
manager module of the runtime. The task manager parses and analyses the request, 
determines whether to accept this request or not, determines the number of processor 
to run the parallel tasks when the request is accepted, assigns processors to the tasks, 
and create a set of MPI [6, 7] processes on the processors for the execution of the 
parallel program of the service entity. The task manager is implemented as a MPI 
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process. It calls MPI library functions to create the MPI processes. The processes of 
the task receive the input data from the service entity directly, and send the 
computation result data back to the service deputy after the completion of the task. 
The processes of the parallel tasks will end themselves when the tasks are finished. 

Service runtime system is running on a computer cluster. All the communication 
and data transfer on it are implemented through socket provided by the operating 
system. The location of the service deputy, the parallel processes of the service entity 
and the task manager of the runtime on cluster nodes is flexible. They are not 
necessarily located on the same node of the cluster. In general, each node of the 
cluster would host only one process of the tasks because running more than one 
processes on a node may reduce the efficiency of the execution. 

4.2 Task Manager 

The task manager is the core of the runtime system. It is consisted of five parts: the 
message queue of parallel task request/completion, the interface manager, the task 
dispatcher, the task scheduler and a queue of the tasks to be schedules,. The interface 
manager takes the message of task request from the message queue, analyzes the 
message, and creates the task for the request accordingly. The task dispatcher 
determines the number of processes that should be created for the task and dispatches 
the task to appropriately selected processors. The task scheduler schedules of the 
tasks in the waiting task queue. The flow chart of the task manager is shown in 
Figure 3. 

Fig.3. Flow Chart of the Task Manager 

During the course of initialization, the message queue is set and a socket port 
associated with it is established to receive the message of task request from the 
service deputy and the message of task completion from task processes, a processor 
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table is created for the task dispatcher to record the status of the processors, and the 
task queue is created for the task scheduler. 

After initialization, the task manager takes a message from the queue if there is 
any. If the message is a task request from the service deputy, the interface manager is 
called to analyze the request. Then the task dispatcher is called to determines how 
many processors are wanted for this task according to the available information such 
as the computational complexity of the task, the total number of the processors in the 
cluster, the number of the available processors in the cluster, the length of the task 
queue and possibly some other information. If the number of the processors wanted 
for the task is less than the number of the currently available processors in the 
cluster, the execution of the task could start. The task dispatcher is called to start the 
task. Otherwise, the task will be inserted into the task queue. In the situation that the 
number of the processors wanted by is greater than the total number of processors in 
the cluster, such as when the problem size is too large, the task request would be 
refused and the rejection message will be send to the service deputy. 

The task dispatcher updates the processor table before it starts a computation 
task. Then it creates a set of processes to execute the parallel computation task. After 
the creation, the processes will communicate with the corresponding service deputy 
directly for the input data and start the computation. The task queue is handled by the 
task scheduler. A task in the task queue could be scheduled if there is enough 
number of processors available according to the processor table. If a task is 
scheduled, the task dispatcher is called to start it. The task will then be deleted from 
the queue. When a computation task is completed, a task completion message is sent 
to the task manager. On receiving the message, the task dispatcher updates the 
processor table. The task is finally accomplished at this point. 

4.3 The Processor Management Strategy 

The management of the computation and resources is the main concern of the 
runtime system design. The processors are the most important resource in the cluster. 
How to make the best use of the available processors is a question that designers of 
the runtime system must answer. Improving the efficiency of the processors and 
increasing the task throughput are the goal of the design of the resource management 
policy of the system. 

The design of the processor management strategy is different for the traditional 
batch job management tools on clusters. For the transparency of parallel 
implementation of a parallel computation service, the number of physical/logical 
processors wanted to run the service is determined by the runtime system at runtime, 
while in most batch job manager tools, the number of processors needed to run a 
program is usually set by the owner of the program at the time when the job is 
submitted. The number of the processors assigned for the task is determined by the 
system at runtime according to the size of the task and the capacity of the cluster. 
The size of a task is measured by the computation complexity provided by the 
service provider in the interface description and the size of the computation 
input/output data available when the service is requested. The capacity of the cluster 
is measured by rate of the number of the total processors and the number of the 
available processors in the cluster. Generally the number of processors wanted by a 

Grid-Based Problem Solving Environments            187



task is determined at the time when the task request is generated. We allow it to be 
changed later when necessary. For example, when a node of the cluster is down, the 
previously determined number of processors wanted for some tasks has to be 
reduced. Meanwhile, when a computer node is added into the cluster, the number of 
processors determined for some tasks may be increased appropriately. 

When the number of available processors is large enough for more than one task 
in the queue, the selection of the task to be scheduled may influence the efficiency of 
the processors in the cluster. The policy for the scheduling is designed as the 
following: 

A. Priority scheduling is applied. The task priority is the most important 
factor for determining the execution order of tasks. No tasks with lower 
priority could be executed unless there is no tasks with higher priority 
could be scheduled. Each task has its priority set when created. The 
priority could be determined according to several factors, such as the 
client’s user ID, size of the task, even the time of task creation.  

B. When several tasks are of the same priority and number of available 
processors is large enough for any of them, the task that needs more 
processors should be scheduled prior to those tasks that need fewer 
processors. The goal of this policy is to make more processors busy and 
schedule the large sized task as early as possible. In this way, the 
possibility of large sized tasks staying in the queue for a long time waiting 
for available processors could be reduced. 

C. If several tasks have the same priority and need the same number of 
processors, the order them are scheduled to run is the same as the order 
they enter the queue. The task that is inserted into the queue earliest 
should be scheduled to run first.  

D. Dynamic priority is introduced into task scheduling. A task, which has 
been waiting for certain period of time, should have its priority increased. 
Otherwise, a large sized task with lower priority may be waiting for too 
long to be acceptable.  

The implementation of the design is currently undergoing. A prototype of the 
runtime for clusters is realized. On this prototype, some parallel computation 
services are developed for experiments. As the parallel libraries/packages are 
valuable legacies, we also developed some services by wrapping parallel mathematic 
library functions of PETSC. It is clear that the client of the parallel computation 
services does not need the knowledge of parallel programming. On the opposite, the 
developer of the services would appreciate greatly the knowledge and experiences of 
parallel programming. This is exactly one of the objectives of THCORE. 

5 Performance Issues and Experiments 

The performance of service runtime is important to the practices of service oriented 
software development. Compare to the monolithic program, the overhead of service 
oriented software comes from two main sources: additional code and data 
movement. Additional code is consisted of the code of service wrapper and the “glue 
code” that connects the service and its client. In our model of parallel computation 
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service, the code that connects the service deputy and service entity is considered as 
glue code as well. Data movement includes the movement between client and 
services and the movement inside the service between its deputy and entity. To 
evaluate the overhead of the proposed model and its runtime system, a simple 
experiment is conducted. 

A parallel computation service is implemented to offer the service of solving 
linear systems. A client program requests the service by invoking the parallel 
computation service. Timers are installed inside the program to measure the time that 
spent by different portions of the program. The experiment is carried out on a small 
cluster of 2 nodes. Each node has a 2.4G CPU and 512M memory. The nodes are 
connected by 100M LAN. The OS is linux-2.6.16 and the parallel programming 
environment is LAM-MPI 7.1.2. The parallel computation service is implemented 
using PETSC version 2.3.1. 

Following quantities are measured and the results are collected: 
1. Service invocation time (T1): The time cost by invoking a non-parallel 

component of THCORE. This time could vary by the location of the service 
execution. When the service is executed in the same process as its client, 
this time will be the smallest. It is about 0.0015 seconds in the experiment. 
This quantity shows the minimum overhead when connecting service and 
client in THCORE.  

2. Parallel service invocation time (T2): The time cost by invoking a parallel 
computation service only without data transferring and computation. It is 
about 0.4158 seconds. This quantity shows the minimum overhead when 
connecting a parallel computation service with its client. The big gap 
between T1 and T2 is from the additional work in activating additional 
processes and establishing the communication channels among the 
processors. 

3. Data movement time (T3): The time cost by invoking a parallel computing 
component with data transferring but no computing. When the input data is 
of the size of 16400 double precision numbers and the output data is of the 
size of 4000 double precision numbers, it is about 8.660 seconds. The 
quantity T3-T2 tells the overhead of data movement for this test problem. It 
is determined mainly by the speed (latency and bandwidth) of the 
interconnection network between the nodes of the cluster.  

4. Total overhead: We measure the total time of solving linear systems by 
invoking a parallel computation service (T4). It is about 59.020 seconds 
when using 2 nodes. It is about 104.625 seconds when using one node. As 
the comparison, we also measure the total time of solving the same problem 
using the same parallel functions from the library in a monolithic style of 
programming (T5). It is about 49.905 seconds when using 2 nodes and 
about 96.625 seconds using one node. The quantity T4-T5 gives the total 
overhead of service oriented programming in THCORE. 

From the experiment results, we know that the overhead is mainly consisted of 
the data transferring. As the scientific computation often has a large size of 
input/output data, the cost of transferring data may become dominant. We should 
reduce the time cost by transferring data to make better efficiency. Besides the 
improvement of interconnection network, to increase the service granularity is a way 
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to reduce the data traffic. It should also be pointed out that the increase in the 
granularity of a service may reduce the reusability of the service. 

During an invocation of a parallel computation service, the input data is sent 
from client to the service via interface and then distributed internally from the 
service deputy to the service entity and the output data is sent in the opposite 
direction back to the client. If all three parties could be located as close as possible, 
the efficiency could be increased. Considering the client is not located on the cluster, 
the possible location plans of the three parties are: 

1. The service deputy is located together with the client in the same process 
and the client invokes the service in the way as a local component. The data 
transferring between the client and the service deputy could be ignored and 
only the remote data transferring between the service deputy and the entity 
remains. 

2. The service deputy is located in a cluster node and the client invokes the 
service as a remote component. The data transfer will be the sum of the 
remote data transfer between the client and the service deputy and the 
remote data transfer among the nodes of the cluster.  

3. The service deputy is neither located with the client nor with the entity in 
the cluster. Although this is not practical, it is valid in THCORE. In this 
case, the data transferring is consisted of the remote data transfer between 
the client and the entity and the remote data transferring between the deputy 
and the entity using the external network, which cost the most. 

The first location plan is the most efficient. A mechanism to arrange the location 
of the parties may reduce the cost of data movement. To further reduce the data 
movement cost is an important issue of performance for the future work. 

6 Conclusion and Future Work 

This paper presents a parallel computation model for computer clusters and the 
design of its runtime system for supporting service-oriented programming on 
clusters. This model will bring the great convenience to the scientists and engineers 
who have to deal with large scientific computations but may not have enough 
experiences of parallel/distributed programming. A simplified prototype of the 
runtime system on cluster is realized for experiments. The preliminary experiments 
are conducted. The analysis of the results shows that the overhead of the service-
based program comparing to the conventional parallel program is mainly from to the 
data movement. The strategy of overhead reduction includes the trade-off between 
the granularity of services and their reusability and the proper arrangement of the 
location of the parties associated in the data movement. 

More study and further research efforts will be put in the investigation for 
efficient methods and tools to wrap the popular parallel libraries/packages into 
parallel computation services and the optimization of the performance of the runtime 
system. The future work will also include the study in the algorithms of resource 
management and the improvement of the quality of service of the runtime system. 
The coordination of the runtime system with the operating system of the cluster and 
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the batch job management software, such as PBS [16], to improve the performance 
of the applications and the throughput of the computer systems will be an interesting 
subject of the future research as well. 
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Q&A – Xiaoge Wang 

Questioner: William Gropp 
What sort of efficiency measurements are you considering (from the slide on 
challenges)? 

Xiaoge Wang 
One of the objectives of Grid technology is to make resources more 
available. Many people are using Grid to reduce the computation time. We 
have been looking at the total execution time as well. But according to our 
experiences, the overhead of service and data distribution over the 
infrastructure could be high. If it is not carefully considered, we may lower the 
resource efficiency when we try to reduce the execution time using Grid 
resources. So, certain measurements should be taken into consideration in 
doing resources management. But we have not yet make it clear what sort of 
measurements we will consider. 

Questioner: Mary Thomas 
Are there future plans to work with other user interfaces such as Matlab, 
portals, etc? 

Xiaoge Wang 
We have done some work on wrapping the THCORE components into Web 
services automatically using the information of the interface described in the 
IDL file. For work with other user interfaces, we have not yet done anything. 
Yes, it will be very interesting to see how it works with Matlab or other 
portals. 

Questioner: Masaaki Shimasaki 
You mentioned virtualization for security as a future challenge. Do you have 
any specific ideas or plans for it? 

Xiaoge Wang 
Isolating the users' working space from the system or the infrastructure is a 
way of providing a certain type of security. THCORE currently only provides 
isolation at the process level and at the physical machine level. In other 
words, we can now invoke the components in the same process, or in a 
different process or in a separate physical machine.  

Another way of isolation that we would like to investigate is to invoke the 
component on a virtual machine which could actually be running on the same 
physical machine. In this way, we may reduce the data transfer time and still 
maintain the same degree of isolation. In addition, we tried to use the cache 
to improve the performance of remote invocation, but it changed the degree 
of isolation of remote invocation of a component. Using virtualization such as 



Xen (http://www.cl.cam.ac.uk/research/srg/netos/xen/) may maintain the 
same degree of isolation but reach the goal of component cache. 

Questioner: Asim YarKhan 
Does THCORE need a client side stub for the services? How about static 
languages like C and Fortran? 

Xiaoge Wang 
Answer is Yes and No. If a client invokes a component to execute in the 
same process, then a stub is not required. It links to the component similar 
as using a dynamic link library or shared object. But if the client would like to 
invoke the component to run in a separate process or in a remote machine, 
then it will need a stub. In the case that client is a script, then the stub is 
dynamically generated using metadata. 

Questioner: Dennis Gannon 
How does your component architecture differ from CCA? How does your IDL 
differ from CCA's SIDL? 

Xiaoge Wang 
First of all, I do not have deep knowledge about CCA. I only read some 
tutorials and publications. So the comparison here is far from accurate or 
complete. At the design phase, we did look at CCA as I listed in the related 
work, and found that CCA is a model that takes care of all sorts of issues in 
parallel programming but it is not exactly what we need. I need to point out 
that, THCORE is a component model that was originally designed for 
component based software running on resource limited systems. It aims at 
independent development of components and an efficient way of putting 
components together through the interface to make an application. This 
mode allows the individual component to change its internal implementation 
without affecting the application. CCA considers more issues in putting 
parallel components together. 

Based of the above arguments, I may guess that there is quite a difference 
between these two IDLs in detail. But I do not have enough knowledge to 
make a fair complete comparison.  



PythonCLServiceTool: A Utility for 
Wrapping Command-Line Applications for 
The Grid 
David E. Konerding and Keith R. Jackson 

Distributed Systems Department 

Lawrence Berkeley National Laboratory, 

Berkeley, CA 94720 

California, USA 

[dekonerding,krjackson]@lbl.gov 

WWW project page: http://dsd.lbl.gov/gtg/projects/PythonCLServiceTool/ 

Abstract. 

The international science community has invested large amounts of money in 
developing numerical and computational codes for everything from basic math 
to application specific codes. These codes are now a vital part of the scientific 
process. However, running these codes can be challenging. Many require a 
highly specialized environment, and may only run in a few locations. To 
maximize the usage of these codes, it is necessary to enable network access to 
them. We discuss our recent work in developing automated tools to enable 
network access to command line applications using Grid[1] tools. 



1. Introduction 

The international science community has invested large amounts of money to 
develop numerical and computational codes for everything from basic math libraries 
to application specific codes. These codes are now a vital part of the scientific 
process. However, their usage often requires a specialized environment, and may 
only run in a small number of locations. To maximize the usage of these codes, it is 
necessary to enable remote network access to them. In this paper we will discuss our 
work to use Grid technologies to expose numerical/computational codes as Grid 
services. A Grid service is simply a network accessible service that uses standard 
protocols to describe its interface and for access. Typically today these protocols are 
based on industry standard Web Services[2]. 

We will begin the paper by looking at related work in the Web Service area. We 
will then look at the architecture of our system, PyCLST (Python Command Line 
Service Tool). After examining the overall architecture, we will look at a concrete 
example of PyCLST usage. Following a brief look at performance, we will discuss 
our future plans and conclusions. 

2. Related Work 

There are several existing software products which provide similar functionality to 
PyCLST.  SOAP::Clean[3] (written in Perl) and O’SOAP[4] (written in O’CAML) 
served as the initial inspiration for PyCLST and provide a limited set of the 
functionality in PyCLST.  The primary difference between PyCLST and 
SOAP::Clean/O’SOAP is that PyCLST is architected around Grid standards rather 
than plain SOAP[5].  This has a number of implications including:  

1. Grid services enhance the security support in SOAP.  SOAP lacks a 
standard authorization mechanism.  Many Grids use a standard 
authorization mechanism based on a gridmap file. Grid security[6] also 
provides single-sign-on to reduce the number of times a user must enter 
their password. Another important feature Grid services offer is delegation.
Delegation allows a user to grant some sub-set of her rights to a third-party. 
For example, after a computational job has run, output files might need to 
be moved to tertiary storage. While the user could manually move the files, 
it would be easier to have the computational service move them for her. 
Delegation allows the user to grant the service the right to interact with the 
tertiary storage system on her behalf. 

2. SOAP has limited support for data transport.  Binary data must be base-64 
encoded which adds a 33% overhead, and large files must be broken into 
chunks for efficient transfer.  Grid services provide efficient, high-
performance, and secure data transport.  We will use the standard 
GridFTP[7] protocol to transfer large input and output files between clients 
and services.

3. SOAP has no standard support for building stateful web services.  Each 
SOAP service typically does this in an ad-hoc manner. Some use cookies, 

196            Grid-Based Problem Solving Environments



others pass session identifiers with each SOAP message, but there is no 
standard way to manage state in Web Services. Grid services adopt the WS-
Resource Framework[8] set of standards to provide state management. In 
particular, the Resource Context subset of WS-RF provides a unique 
“handle” shared between the service and client that refers to a particular 
request stream.  The WS-Lifetime subset is used to manage the lifecycle of 
the service (create and destroy a resource context) and WS-
ResourceProperty is used to manipulate meta-data associated with the 
service and provide a substrate for state change notification. 

4. SOAP has no support for asynchronous notifications, so the command line 
client needs to periodically poll the server for result data or keep a request 
open for a long time. Grid services adopt the WS-Notification[9] to provide 
asynchronous notifications. 

Each of these features is used by PythonCLServiceTool to provide enhanced 
functionality relative to SOAP::Clean and O’SOAP.  Further, because client 
computers commonly have firewalls that prevent WS-Notification data being 
retrieved, we include code that detects and works around firewalls using a polling-
based, rather than callback-based, response mechanism. 

Kepler[10], an open source workflow execution tool built on the Ptolemy 
Framework[11], has a Web Service Harvester.  The Harvester inspects WSDL[12] 
files and builds workflow actors which are capable of accessing the service defined 
by the WSDL file.  This allows users to easily interface Kepler with existing web 
services without having to write code for new actors.  Many other systems provide 
similar functionality, however, unlike PythonCLServiceTool, these tools are only 
used to generate client bindings to an existing service. Because 
PythonCLServiceTool exposes command-line applications using a standard web 
service interface and provides a WSDL file describing the service, tools like the Web 
Service Harvester can be used to generate their own clients to the wrapped service. 

3. Architecture 

3.1 Overview of general architecture 

Developers configure PythonCLServiceTool clients and servers using a simple user-
written configuration file containing named sections populated by key/value pairs.  
Because all PythonCLServiceTool clients and servers have a great deal of common 
functionality with just a small amount of command-specific generated code, a 
collection of template files are interpolated at client/server generation time.  The 
command line parsing code is generated programmatically. 

PythonCLServiceTool uses several existing Python frameworks rather than 
duplicating existing functionality.  PythonCLServiceTool uses an asynchronous I/O 
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framework called Twisted[13] for grid and web service communications, as well as 
external process management.  Because the service can handle multiple simultaneous 
requests without delay, we needed an asynchronous I/O library.  Without this 
functionality, the service would block on data send/receive operations and on process 
launching/management.   

PythonCLServiceTool co-opts an existing standard Python framework used for 
packaging and distributing software called setuptools[14] for generating clients and 
servers.  Setuptools provides an extensive plug-in framework normally intended for 
package installation, but we also use it for template substitution and service 
configuration and deployment.  Optionally, the runtime and configuration files for 
the server can be packaged into a single executable file for easy server deployment.   
PythonCLServiceTool uses the setuptools bdist_egg and bdist_wininst features to 
build a self-contained installer containing the entire service or client runtimes.   

The PythonCLServiceTool server generation process creates a Twisted server, 
the server configuration file, and the necessary runtime code for running the server.  
The PythonCLServiceTool client generation process creates a Twisted client, a client 
configuration file, and the necessary runtime code for running the client.  Optionally 
the runtime and configuration files for the client can be packaged into a single 
executable file for easy client distribution.  The client interface is intended to be 
exactly like the command line interface. It uses the same flags, and ideally should be 
a direct replacement for the command line application. However, because the client 
and server processes run in different file system contexts, and users will want to run 
jobs on files stored on the client computer, PyCLST adds a special syntax to the 
command-line shell that indicates that the referred-to file should be transferred to the 
server before job execution.  

To ensure that only valid users may access deployed services, PyCLST supports 
the standard grid-map-file format which is used by the Globus Toolkit®[15] to 
authorize users based on the subject name contained in their X.509[16] certificate.  
Also, if the PyCLST server is run with super-user privileges, it will change identity 
to run the application as the local user specified in the map-file. 

3.2 Configuration file format.   

The configuration file is based on the Windows INI file format as interpreted by the 
Python ConfigParser module.  A sample configuration file that wraps the blast
command is seen in Figure 1.  As you can see, it is a simple set of name value pairs 
separated out into different sections. 

The user specifies the name of the executable to be run on the server side.  The 
executable name should be specified as an absolute path to ensure that other 
executables earlier in the server container's PATH are not executed. 
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The developer specifies the name of the service, which is normally the same as 
the suffix of the executable pathname (the name of the binary).  The service name is 
incorporated into the service in a number of ways: it is used to form a unique name 
for the server configuration files, the name of the generated SOAP parsing and 
encoding scripts, and the WSDL file. 

The developer specifies all of the arguments that the executable is capable of 
accepting.  There are two main types of arguments that command line applications 
are capable of taking:  

Positional arguments derive their meaning from their position in the 
command line.  Developers indicate the position of an argument through 
the prefix name of the argument, for example, all position argument 
definitions starting with "arg1" refer to the argument in the first (left-
most) position.  The Unix cat command outputs the contents of files in 
left-to-right positional order on the command line. In this example, the 
configuration file specifies that the cat command can take up to three 
positional arguments (technically, the cat command can take many more 
but we left that out for brevity).  All the positional arguments are 
specified as 'optional' because the cat command can be invoked without 
any positional arguments, in which case cat will read from standard 
input.   

Option arguments start with one or two dashes and may be followed by 
a value.  "Option" in this context is taken from the Python optparse
module, and does not mean that it is optional whether the argument is 
required. It merely indicates that this type of argument is typically used 
to indicate an optional different behavior. The developer indicates 
whether an option argument has a value associated with it and whether 
it is "optional".  Option arguments with no value look like "-X" while 
arguments with a value look like "-X something".  In this example, we 
specify two of cat's option arguments, -n and --version.   The -n option 
to cat causes it to print line numbers at the beginning of each line.  The 
“—version” option causes cat to output its version number. 

There are a number of complex issues associated with argument parsing.  
Although the vast majority of applications follow simple conventions of allowing a 
mix of positional and option command line arguments, several perverse applications 
have much more complex rules.  A comprehensive review of all applications (or 
even just standard Unix commands) is far beyond the scope of this document.  
Nevertheless, there are commands such as tar, dd, and find, each of which violates 
some of the conventions supported by PythonCLServiceTool.  Tar allows multiple 
options to be coalesced into a single option (such as -xvf, which means extract 
verbosely from a file).  PythonCLServiceTool has no configuration file syntax to 
support expressing when variables can be coalesced, and would interpret this as a 
single option called "xvf", which would not be recognized.  The user can work 
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around this restriction by specifying the options separately, "-x -v -f".  dd is an odd  
Unix command which does not prepend its option arguments with dashes, so options 
look like "count=BLOCKS" instead of "-count BLOCKS".  The developer can 
simply define these as positional arguments, losing some of the power of option 
arguments.  The find command has a complex, stateful command line in which order 
matters.  There is no support for checking for valid ordering at the client-side in 
PythonCLServiceTool; in this case, the find command run on the server will report 
an error.  We reasoned that the tar, dd, and find behaviors are relatively rare and did 
not justify additional configuration file syntax or option parsing code.   Ideally, all 
applications would conform to the GNU standard for command line options, and we 
would support exactly that standard, but our support covers the vast majority of cases 
without being unduly complex.  Fortunately the scientific applications we are 
targeting typically follow the GNU standard anyway. 

3.3 Grid Toolkit Support 

PythonCLServiceTool uses the pyGridWare[17] toolkit to support all of its grid- 
and web-services functionality.  The pyGridWare toolkit includes code to generate 
Python grid services from WSDL files, as well as runtime libraries for constructing 
and running grid services and clients.  PyGridWare provides support for the WS-
Resource Framework collection of standards used by grid services, as well as WS-
Notification.  When building a grid service, pyGridWare generates a text  file that 
contains all the configuration details for the service (such as encryption, 
authorization, and authentication, as well as logging and other common service 
functionality), a script containing all the code to start the service on a deployment 
host, and the generated code for a specific grid service.   

The code generated by PythonCLServiceTool follows standard WSRF practices 
in using a standard web service to manage multiple stateful instances.  This ensures a 
deployed service can handle multiple simultaneous requests, each with its own 
“context” that ensures individual results are delivered to the correct user. 

3.4 Template files and Code generation.  

When the developer requests server or client code generation, a collection of 
template files which contain all the generally required common functionality are 
string interpolated using the configuration file substitution values for name and 
executable.    The command line client stub, pyGridWare server container startup 
scripts, client and server runtime libraries, server configuration file, WSDL[12], and 
XML schema[18] corresponding to the interface of the service are generated.  These 
WSDL and XML schema files can be re-used by other applications that can re-
implement either the client or service sides of a PythonCLServiceTool instance. 
Users are not tied to using our Python clients. The usage of standard web service 
protocols means that new clients can be generated in any language that supports the 
WSRF/WS-N protocols suites. The output filenames from the template substitution 
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are based on the input filenames, but are string interpolated to customize them to the 
service instance.  This allows co-installation of the runtime code for several services 
in the same directory. 

Some Python code specific to a PythonCLServiceTool instance is generated 
automatically (not from template files). The command-line parser and encoding and 
decoding routines are generated automatically from the argument definitions in the 
configuration file, because this generated code is highly dependent on the specific 
details of the command line application arguments. 

PythonCLServiceTool utilizes nearly all the basic features of a WSRF based Grid 
client and service.  It has been carefully documented to make it clear how basic Grid 
functionality (such as web service code generation, notifications, security, and 
deployment) can be used from Python.  Developers are welcome to use and adapt the 
template file and code generation features of PythonCLServiceTool to develop their 
own grid applications. 

3.5 Tool Usage and Deployment 

PythonCLServiceTool leverages an existing Python project-building installation 
framework known as setuptools.  It uses setuptools to string interpolate the template 
files, build deployable service instances, and build distributable clients.  We chose to 
use setuptools because Python users are familiar with the standard setuptools 
commands; a simple 
% python setup.py install 
will generate the code, configure the service, and deploy it. 

The PythonCLServiceTool generated service is typically deployed as a collection 
of files: the server configuration file, server startup script, and server runtime 
implementation code.  The service configuration file is a simple text file with the 
same syntax as the PythonCLServiceTool configuration file used to generate the 
client and service.  It defines logging, SSL security, authorization, the server port and 
interface, URLs to the grid services and the name of the executable.  The startup 
script is either a shell script (on Unix-like platforms) or a DOS batch file (on 
Windows).  The server runtime contains all the string-interpolated template files  

PythonCLServiceTool uses the Twisted framework and pyGridWare toolkits to 
provide a web server that hosts the specific service instance.  Multiple service 
instances (corresponding to different command-line applications) can be co-located 
into a single web server directory; this simplifies using a single machine to host 
multiple services (it is also possible to have multiple separate servers each using a 
different port).   

When a client requests the service to run the command line, the service parses the 
SOAP-encoded command line, and uses the Twisted Framework to fork an external 
process that executes the command line.  Twisted's internal asynchronous reactor 
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support provides standard output, standard error and process return code to the 
service instance without blocking the service container.  As bits of standard output 
and error become available from the process, the service instance pushes that data to 
the client via notifications.  If firewall or other considerations disallow client 
notification support the client will detect it and poll the server.   

The client side script is designed to be easily distributed to users.  It uses the 
setuptools feature bdist_rpm to produce an RPM on RPM-based Linux systems.  It 
can build self-contained executables for DOS- and Unix-like systems which include 
the client scripts, runtime libraries, and, configuration file.  From the perspective of a 
user, the client script operates identically to the original command line (insofar as the 
configuration file is an accurate representation of the original command line's 
arguments).   

3.6 File staging 

Because users frequently have files stored locally that they need to process remotely, 
PythonCLServiceTool provides the ability to specify input files that are to be staged 
onto the server.  PyCLST allows the user to specify local files, which are to be 
transferred to the server, through a special command-line syntax.  The filename of 
the local file is enclosed in an '{' and '}'.  For example:  
% cat.sh {/tmp/localInputFile}
will transfer the file /tmp/localInputFile from the client machine to a temporary 
directory on the server, and when the job runs on the service, it will have the 
temporary file name substituted into the command line. 

Files are currently staged by base64 encoding by default but the staging 
mechanism could also be implemented using GridFTP, RFT, or other file movement 
mechanisms.  This support is necessary for moving large data files.  In the future 
PyCLST will optionally create a server working directory for each job instance and 
transfer all the files created in the directory during job execution back to the client. 

4. Example Usage of PythonCLServiceTool 

4.1 Wrapping the NCBI BLAST application blastpgp

We now demonstrate a concrete example of using PythonCLServiceTool: wrapping 
a very popular bioinformatics tool called BLAST[19].  Specifically, we will 
demonstrate wrapping the blastpgp command distributed with NCBI BLAST.  
blastpgp searches a protein sequence database against a protein query sequence, 
permitting gaps in the alignments between query and database sequences.  Biologists 
use this application to identify novel genes based on their similarity to existing, well-
characterized genes.  BLAST is significantly faster than other sequence-search 
algorithms, although it is not as accurate as methods such as Hidden Markov Models.  
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In this example we will assume that the host on which the service is deployed 
already has the BLAST databases installed and properly formatted, while the query 
sequence is stored on the client machine.  

A minimal blastpgp command line looks like the following:  

% blastpgp –i query.fa –d database 

The –i option lists a local filename which contains the query sequence, while the –d 
options lists the name of a database which is located using the BLASTDB variable.  
Because this option does not refer to an actual full path name but rather a collection 
of files in the BLASTDB directory which are prefixed by the database name, 
PythonCLServiceTool is not currently able to stage BLAST database files.  This is 
generally not a problem because normally users would use a database preinstalled 
and formatted at the service. Blastpgp takes a number of options that affect its 
behavior, although except for –i and –d, all of these are optional.  It takes no 
positional arguments. 
The blastpgp wrapper config file is given in Figure 1.  We have wrapped the two 
required options, -i and –d, and also wrapped several other commonly used options: -
o, which allows the output to be redirect to a local (local to the service) file, -e which 
defines a different statistical cutoff threshold than the default, and –m which allows 
the output file format to be adjusted.  Each of the options takes a value, and other 
than –i and –d are optional (not required).  To create the service and client, enter  
% python setup.py install.

In this example, running python setup.py install deploys both the service and the 
client to the local Python installation.  

4.2 Running the Example 

After the service and client have been deployed, start the service container.  The 
name of the service container startup script on Unix-like systems is start-
container_blastpgp.sh and on Windows is start-container_blastpgp.bat.  The server 
can be started in any directory; that directory will act as the “current directory of the 
server”, meaning executable files will be run from that location and relative file path 
references will be computed from that location.  Create a protein sequence query file 
in the current directory.  Call it test.fa and have it contain the following query 
sequence:

>gi|33357914|pdb|1P85|M
MDKKSARIRRATRARRKLQELGATRLVVHRTPRHIYA
QVIAPNGSEVLVAASTVEKAIAEQLKYTGNKDAAAAV
GKAVAEALEKGIKDVSFDRSGFQYHGRVQALADAARE
AGLQF

Download the sample database pdbaa from 
ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/pdbaa.gz
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and decompress it in this directory.  Next run the blastpgp command  
% formatdb –o T –I pdbaa 
to create the BLAST index file. 

Run the client command, which is called blastpgp.sh on Unix-like systems and 
blastpgp.bat on Windows, with the following options: -d pdbaa –I test.fa.  If it is 
successful, blastpgp will print many lines of useful information including which 
sequences in the database match the query, the alignments of those sequences to the 
query, and statistical scores.  

Finally, test the client with a local file. Move the test.fa file created in the service 
deployment directory to /tmp or some other folder, and run the following command 
(if your shell (most Unix shells do) has its own use for { and }, quote those 
characters with \): 
% blastpgp.sh –d pdbaa –I {test.fa}. 

5. Performance 

A natural question arises when exposing numerical/computational codes as Grid 
services. Is the performance adequate? Despite the obvious benefits of exposing your 
codes over the network, if the performance is not sufficient it will not be used. 
Because PyCLST is based on the Python WSRF toolkit, pyGridWare, we will focus 
on examining the performance of pyGridWare. We will discuss the basic XML 
parsing performance and the additional overhead of various security options. 

In pyGridWare the overwhelming majority of the overhead is in XML parsing. 
Messages must be serialized into an XML format before crossing the wire, and then 
de-serialized back into Python on the receiving end. Clearly the choice of an 
underlying XML parser is very important. We were able to gain a factor of 20 
performance gain by switching to a C based XML parser with a Python interface 
from a pure Python XML parser.  

We recently tested pyGridWare using a 2.0GHz dual opteron Linux machine. 
When running both client and server on the same machine to avoid network round 
trip time, we see that basic WSRF operations take a little less then 10ms per 
operation. Over 90% of this time is XML parsing. This is the baseline for what is 
possible, but in a real-world application security will become important. 

While security is essential to running production level Grid services, it does add 
significant overhead. Using the same testing environment as before, we examined 
two different authentication mechanisms. The first is based on the widely used IETF 
standard TLS[20] protocol. This is the same protocol used on the WWW to interact 
with your bank, or place an order on Amazon. The second authentication mechanism 
uses XML security primitives to sign the SOAP messages being exchanged. In both 
cases, a Python binding to the open-source OpenSSL[21] toolkit provides the 
cryptographic primitives. Tests using the TLS protocol take approximately 25ms per 
operation. By using the support in the TLS protocol to re-use a security context, it is 
possible to amortize this overhead over a number of calls. Message level security 
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based on XML security is significantly slower. Operations take approximately 65ms 
per round-trip. 

While there are many applications where introducing a 10ms overhead would be 
unacceptable, we have found that for the applications we are targeting the 
performance of PyCLST is acceptable. For example, a typical BLAST query may 
run for 30 seconds. When you amortize the 25ms overhead over the entire 30 second 
run, the PyCLST overhead is negligible. 

6. Future Work 

6.1 Wrapping Command Line Applications for Grid Workflows 

We anticipate that PythonCLServiceTool will be used to wrap command lines that 
are integrated into workflows.  When multiple grid services are orchestrated together 
as a workflow, it is desirable for the user running the workflow to be able to delegate 
their credentials to services which carry out work on their behalf.  This is an 
important feature for enabling an important optimization, which is that services will 
communicate in a third-party manner without sending the results of jobs back to the 
client, and also eliminates the need for users to type their passwords for each 
individual operation in the workflow.  For example, BLAST output is frequently 
parsed by a secondary program to produce a compacted representation.  It would be 
inefficient for a workflow to run an external BLAST program, collect the standard 
output, then forward it on to the standard input of the parsing program; instead, it is 
much more efficient for the standard output of the BLAST program to be connected 
directly to the standard input of the parsing program.  This sort of third-party 
communication requires that the two services have the appropriate permissions, 
which is enabled through credential delegation.  Credential delegation is also 
essential for access to other grid services such as WS-GRAM and RFT, support for 
which will be included in a future version of PythonCLServiceTool.  These features 
will allow PythonCLServiceTool to add important functionality, including the ability 
to run jobs through an external scheduler, and reliably manage transfers of 
collections of large input/output files. 

6.2 Authentication and Authorization 

Currently, PythonCLServiceTool does not carry out any special checks to ensure that 
a client request is from an authorized user.  This could lead to denial of service and 
other attacks on the service.  PythonCLServiceTool will adopt an authorization 
model analogous to Globus based on the gridmap file.  This model uses public-key 
cryptography combined with a file that maps user certificates into user names.  When 
the client connects to the server, the server requires it to provide a certificate which 
states the identity of the user.  The server validates the certificate, ensuring that it 
comes from a trusted source, and then uses the user name in the certificate to map to 
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a local user.  If a client request is presented without a valid certificate, the server will 
immediately terminate the request. This file adopts the same format as the Globus 
gridmap file and performs effectively the same functionality.  For example, this line 
in the gridmap file: 
"/DC=org/DC=doegrids/OU=People/CN=David E. Konerding 692119" dek 
indicates that a client who presents a certificate with the distinguished name in 
quotes will be mapped to the local user dek.  Multiple certificates can be mapped to a 
single user on the system which is convenient if it is desired not to add any "extra" 
user accounts on the system.   

In addition to supporting grid-map-file based authorization, we will also implement a 
standard authorization interface. This will allow others to plug in other more flexible 
means of authorization, i.e., SAML[22], VOMS[23], etc. 

6.3 Advanced File and Job Support 

Many applications output collections of files in the run directory of the service, 
and these files will need to be available to the client.  Therefore, 
PythonCLServiceTool will be enhanced to support several higher-level data transfer 
mechanisms to facilitate high-performance, reliable file transfer as implemented by 
RFT and access to storage resource managers and brokers including SRM[24] and 
SRB[25]. 
The current PythonCLServiceTool model is to execute an application on the service 
host.  However, in many situations the service host is not the most applicable 
location to execute the application.  Therefore, PythonCLServiceTool will be 
enhanced to include submission to external batch schedulers using the standard WS-
GRAM interface.   

6.3 Fault tolerance 

There are a number of aspects which could cause a job to fail while running on the 
service.  Further, there are events which could cause the service container to crash.  
To ensure that the service container is reliable, and outstanding requests persist 
beyond a crash, the service will store its internal state in a durable disk file using a 
lightweight but powerful embedded RDBMS, “sqlite”[26].   

Another aspect of maintaining a reliable service is to instrument the service with 
logging functions.  This logging is invaluable when, inevitably, something goes 
wrong with the service.  We will integrate support for the NetLogger[27] library, a 
lightweight but high-performance network logging toolkit designed for use in 
distributed systems like a Grid. NetLogger integration will enable service developers 
to get fine-grained views of their service’s operation, which is invaluable both during 
debugging and when diagnosing server failures. 
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6.4 Programmatic interfaces to legacy programs.   

As we stated earlier, PythonCLServiceTool was initially targeted at wrapping 
command line applications, exposing the standard input, standard output/error, and 
return code of an application.  However, some legacy applications expose their 
functionality at a library rather than application level.  We will enhance 
PythonCLServiceTool so that it can be used to wrap libraries in addition to 
applications.  These libraries will be accessed through a small command-line client 
stub which can be used to create service library instances, create instances of data 
structures defined by the library, invoke functions in the instance, and ultimately 
destroy the library instance.   

Many Fortran applications can be automatically wrapped using the f2py[28] 
application.  This application parses Fortran source code for a library and generates 
Python modules that can call the Fortran functions in the library directly.  
C and C++ applications can be wrapped using SWIG[29].  SWIG parses C and C++ 
source code for a library and generates Python modules that can call the C/C++ 
functions in the library directly. 

6.5 Config file format 

We have identified a number of problems which cannot be addressed using our 
existing configuration file format.  The format, while simple, is cumbersome for 
applications with large numbers of option arguments, unbounded number of 
positional parameters, and complex command line parameters that interact with each 
other.  Future versions of PythonCLServiecTool will switch to an XML-based file 
format that will allow for much more extensive specification of command line 
behavior and will expose many more implementation details in 
PythonCLServiceTool to the developer.  Since the existing format is useful for many 
simple applications, a translator from the existing format to the XML format will be 
provided. 

The new XML file format will add support for more complex/varied command 
line formats (such as better support for /option formats used on Windows), including 
mechanisms for overriding the default file transfer behavior, redirection of I/O via 
third party interactions, interactions between command line options, and detection of 
invalid command lines on the client side. 

6.6 Better self-contained deployment 

We are investigating the use of py2exe[30] on Windows and freeze on UNIX to 
create a more self-contained deployment including the Python runtime.  The current 
single-executable deployment contains only the service or client runtime libraries 
and startup script, thus it requires a valid Python installation on the target machine.  
We will use Py2exe and freeze to take the generated PythonCLServiceTool package, 
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and combine it with a full Python installation and the required runtime libraries to 
provide a single executable that can be easily deployed to a service or client host.  

7. Conclusion 

PythonCLServiceTool addresses two existing problems facing the community: 
how to make applications available to scientists without distributing the entire 
software package, and how to make legacy application available on the grid without 
extensive retrofitting. 

As shown in the Performance section, PythonCLServiceTool adds marginal 
overhead compared to typical long-running scientific applications.  Although there is 
some cost to XML parsing and security, these represent only a tiny fraction of the 
overall time spent running the application. 

There are still several remaining features which must be implemented before 
PythonCLServiceTool can be used in production environments.  The authorization 
functionality needs to be implemented so that only authorized users can invoke the 
service.  Command-line syntax and back-end support for high-performance file 
transfers is required before large files and standard input/output can be used.  Fault-
tolerance, recovery and logging must be implemented for the service to be useful in 
long-running production environments.  Finally, the configuration file syntax needs 
to be significantly enhanced to support these features and to allow for more 
sophisticated command line support.  Nevertheless, PyCLST has shown the value of 
simple automated tools to help expose legacy applications as Grid services. 
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8. Figures 

Figure 1 

[main] 
name=blastpgp 
executable=/home/portnoy/u5/dek/sw/i386/blast-2.2.13/bin/blastpgp 

[optionarguments] 

arg1option=-i 
arg1desc= Query [File In] 
arg1hasvalue=True 
arg1optional=False 

arg2option=-d 
arg2desc= Database [String] 
arg2hasvalue=True 
arg2optional=False 

arg3option=-o 
arg3desc= Output File For Alignment [File out]  
arg3hasvalue=True 
arg3optional=True 

arg4options=-e 
arg4desc=Expectation value (E) [Real] 
arg4hasvalue=True 
arg4optional=True 

arg5option=-m 
arg5desc=alignment view options 
arg5hasvalue=True 
arg5optional=True 

## BLAST does not have any position arguments. 
[positionarguments] 
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Q&A – Keith Jackson 

Questioner: Brian Smith 
Numerical applications often are made up of multiple numeric components. 
These components frequently pass large amounts of data between 
components and other applications, the data is returned as part of the 
service. Are the service tools and techniques able to support such scenarios 
in a reasonable way?

Keith Jackson 
Currently tools are available to support these scenarios, but only in an ad-
hoc manner. It is an ongoing area of research to understand what 
functionality and interfaces services should support to make linking them 
together into larger applications easier. Today too much of this process must 
be done manually as part of the workflow. For example, today I would submit 
a job to a numerical service, and then have my workflow script use GridFTP 
to move the data to the next service. In the future, it should be possible to tell 
the first service that it should send its output data to the second service and 
have it all happen without manually coding the data transfers. 

Questioner: Craig Douglas 
Where are examples of automated tools in Python that actually generate 
real, non-trivial services? 

Keith Jackson 
Currently SWIG is the most popular tool to generate Python bindings to C or 
C++ code. F2py is probably the most popular tool for generating Python 
bindings to Fortran codes. Both have been used extensively to provide 
interfaces to numerical codes. A good example is the data analysis pipeline 
for the Hubble telescope. All of the images run through a pipeline that is 
written in Python, but invokes a large number of services written in C, C++, 
and Fortran. For more information on wrapping numerical codes in Python, 
see: http://www.scipy.org/Cookbook. 

Comment: Craig Douglas 
Visual C 1.0 (circa 1998) compiled and linked 90,000 lines of code to put a 
window up that said "Hello". Automated tools that generate an enormous 
number of lines of Grid/Globus code similarly emphasize that Grid services 
programming is obscenely over-complicated.

Keith Jackson 
Indeed Grid service programming can be very complicated. Finding ways to 
hide as much of that complexity as possible while still providing useful tools 
to the scientists is an ongoing research problem. 



Questioner: Gabrielle Allen 
Can you explain more about how services are deployed. Is there one service 
for each application on the machine? How do you track changes in the 
application location? 

Keith Jackson 
Currently there is one factory service for each application on the machine. 
Each running instance of that service would also have a unique service that 
encapsulates the running code. Service deployment is still done manually. 
We plan on leveraging some of the work of Kate Keahey at ANL on 
automated service deployment. She has been investigating what information 
you need, and how it should be presented, so that a system can decide 
where to deploy services in real time. 

Comment: Dennis Gannon 
We use an application service factory to generate service instances on the 
fly. This solves the problem of "too many services". 

Questioner: Dennis Gannon 
How do you handle programs with complex input and output files? 

Keith Jackson 
Currently the user has to ensure that the proper files are in place before 
running the service, and then move the output files after the service has 
completed. Typically this is done using GridFTP. In our visual workflow tool 
we encapsulate this into a hyper-graph node that uses GridFTP to move the 
input files in, runs the service, and moves the output files. To the scientist 
this looks like an atomic operation. 
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Abstract. GridSolve is a stubless RPC-based client-agent-server sys-
tem for remotely accessing hardware and software resources. GridSolve
emphasizes ease-of-use for the user and includes resource monitoring,
scheduling and service-level fault-tolerance. In addition to providing
Fortran and C clients, GridSolve enables scientific computing environ-
ments (such as Matlab) to be used as clients, so domain scientists can
use Grid resources from within their preferred environments. GridSolve
is a more highly evolved version of the earlier NetSolve project, and it
is based on the emerging GridRPC standard. This paper will discuss
the changes and improvements involved in the evolution from NetSolve
to GridSolve.

1 Introduction: The Grid and Network Enabled Solvers

The adoption of Grid infrastructures as a major platform for supercomputing
holds great promise for accelerating scientific discovery. However, the use of
Grid infrastructures has, for the most part, been restricted to the largest and
most resource intensive projects. For Grid computing to become a true success
story, it must become an infrastructure that can be easily used by the general
community of scientists and engineers. Within this community of practitioners,
the use of scientific computing environments (SCEs) such as Matlab or Math-
ematica is pervasive. These domain specialists are accustomed to the flexible
computing environment provided by an SCE, which gives them the tools and
libraries they need to be productive and enables them to go from computation
to visualization in a natural fashion.

Network enabled solvers can be used to extend the power of SCEs so that
they reach beyond the users desk, and into the network of resources available on
the Grid. End users are not required to install and maintain local software and
libraries, and can simply use the libraries that have been installed at a remote
location. Since the libraries and remote services can be maintained by experts,
they can be highly tuned and provide the optimized execution on the remote
platform.

The purpose of GridSolve is to create the middleware necessary to provide
a seamless bridge between the simple, standard programming interfaces and



desktop systems that dominate the work of computational scientists and the
rich supply of services supported by the emerging Grid architecture, so that
the users of the former can easily access and reap the benefits (shared process-
ing, storage, software, data resources, etc.) of using the latter. The vision of the
broad community of scientists, engineers, research professionals and students,
working with the powerful and flexible tool set provided by their familiar scien-
tific computing environments, and yet able to easily draw on the vast, shared
resources of the Grid for unique or exceptional resource needs, or to collaborate
intensively with colleagues in other organizations and locations, is the vision
that GridSolve is designed to realize.

2 Foundations of GridSolve: GridRPC and NetSolve

GridSolve is based on the RPC paradigm for distributed computing, but it
is an entire environment which provides stubless clients, resource discovery,
load balancing, fault tolerance, asynchronous calls, disconnected operation and
security. A primary goal for GridSolve is ease-of-use, providing transparent
access to resources. GridSolve employs two primary enabling technologies, the
NetSolve solver [2] and the GridRPC API [11].

2.1 GridRPC: An API for Grid Remote Procedure Calls

The GridRPC API represents ongoing work to standardize and implement a
portable and simple remote procedure call (RPC) mechanism for Grid comput-
ing. This standardization effort is being pursued through the Grid Remote Pro-
cedure Call Working Group within the Open Grid Forum (formerly Global Grid
Forum). GridRPC provides a common setting within which users can develop
RPC programs, so that these programs are source code compatible. GridSolve
has recently passed a GridRPC compliance test, along with two other GridRPC
implementations, Ninf-G [12] and DIET [4].

2.2 NetSolve: A Precursor to GridSolve

NetSolve is a client-agent-server system which provides remote access to hard-
ware and software resources through a variety of client interfaces. A NetSolve
system consists of three entities, as illustrated in Figure 1.

– The Client, which needs to execute some remote procedure call. NetSolve
client interfaces have been implemented in Matlab, Mathematica, Octave, C,
Fortran and Java. Client-side stubs are not required to access remote services,
the client-side service bindings are looked up from the server as needed.

– The Server executes services on behalf of the clients. The server hardware
can range in complexity from a uniprocessor to a MPP system and the func-
tions executed by the server can be arbitrarily complex. Server administrators
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Fig. 1. NetSolve client-agent-server architecture. The agent monitors the servers on
the Grid and records available service and server status in a database. The agent
can also record network status using NWS (Network Weather Service). The agent
schedules the client request to be executed on an appropriate server. The GridSolve
system uses the same architectural model.

can write service definitions and add their own services without affecting the
rest of the NetSolve system. Since there are no client side stubs, any client
can become immediately aware of any services that are added.

– The Agent is the focal point of the NetSolve system. It maintains a list of all
available servers and services, and performs resource selection and scheduling
for client requests as well as ensuring load balancing of the servers.

The system is designed to be easy to use from the perspective of an
end-user. The user executes code containing a call to NetSolve similar to
netsl(’myfunction’,parameters, ..). The rest of the remote execution hap-
pens transparently from the point of view of the client. The GridSolve client
library contacts the agent which finds servers that can satisfy the request, and
ranks these servers. The client receives the list of servers and submits the re-
quest to the highest ranked server. If the request fails for some reason (e.g.
network problems, server down), the client can automatically resubmit to the
next server in the list, providing service level fault tolerance. The server exe-
cutes the requested service and returns the output to the client. In this way, the
end user can access Grid resources without having to be aware of all the details
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involved in finding, allocating and monitoring the resources and managing the
software and libraries.

In addition to providing the middleware necessary to perform the brokered
remote procedure call, NetSolve provides mechanisms to interface with other
existing Grid services. NetSolve can use server-proxies to communicate with
several back-end resource and execution managers, such as batch queue man-
agers, the Condor [9] high throughput computing system, and MPI runtime
systems. A server-proxy is specific to a back-end system, and accepts requests
from the client using the same protocols as a standard NetSolve server. The
primary benefit is that the client-to-server communication protocol is identical
so the client does not need to be aware of every possible back-end service. The
actual resources that execute a service may be a serial machine or a parallel
machine, with the same service being implemented using different algorithms
on different servers.

NetSolve has several specialized execution mechanisms which support com-
mon computing models. There is a task-farming API within NetSolve that sup-
ports parameter-sweep or master-worker style applications. A task sequencing
API enables workflow type applications where the input data or intermediate
outputs are to be retained at the remote server, and to be used in further
computation.

NetSolve is distributed with service wrappers for many numerical libraries,
such as LAPACK, ScaLAPACK, SuperLU, ARPACK and PETSc. If these li-
braries are available at the servers, they can be enabled within NetSolve. Some
numerical libraries (e.g., BLAS, LAPACK, SuperLU) are even included in the
NetSolve distribution, enabling a NetSolve server to provide useful services im-
mediately upon installation.

2.3 Shortcomings of NetSolve

Network design, hardware architectures, and software methodologies have changed
substantially since the beginning of the NetSolve project in 1996 [5]. More and
more sites are using NATs (Network Address Translators) as a method of ex-
tending IP usage within a private subnet and as a security tool. NetSolve was
designed before the widespread use of NATs, and it includes a server initiated
call-back to the client as part of the communication protocol. This cannot take
place if the client is behind a NAT, requiring a complete rewrite of the Net-
Solve system. Additionally, NetSolve keeps track of components by IP addresses,
which are not globally unique in the presence of private subnets managed by
NATs.

NetSolve also uses a wide range of ports for its communications. In this
current era of increased network security and omnipresent firewalls, this re-
quirement was awkward to meet. Many sites with strong firewall policies are
not setup to unblock and allow network traffic on a wide range of ports.

From the beginning, NetSolve was designed to make it possible for users
to add additional services to their servers, to allow them to turn their custom
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applications into services that can be executed on powerful remote platform
and can be accessed easily from desktop clients. However, experience has shown
that this process was too complicated for many users, since adding services to
NetSolve requires preparing a fairly idiosyncratic service description file, which
uses mnemonic fields to describe data types and structure.

When a service is added to NetSolve, a measure of the computational com-
plexity of the service needs to be provided to make it possible for the NetSolve
agent to estimate the execution time of that service on various servers and thus
rank the servers. This computational complexity was described using a mini-
mal model, which makes it difficult to implement more complex and accurate
scheduling algorithms.

3 GridSolve: A Network Enabled Solver

The GridSolve project is an evolution of NetSolve, architected to overcome the
shortcomings of NetSolve and to provide a platform for additional development
and experimentation. The system architecture of GridSolve is the same as that
of NetSolve shown in Figure 1, where a client-agent-server system interact to
provide transparent Grid based services to an end-user.

The overall goal of the GridSolve project is to address three general prob-
lems: ease of use, interoperability, and extensibility. Improving ease of use refers
to improving the process by which libraries and services are added into a Grid-
Solve server. Interoperability encompasses several facets, including better han-
dling of different network topologies, and better interaction with other Grid
computing projects. Extensibility in this context means easy extension to new
parallel libraries and architectures, support for large datasets, and better re-
source scheduling to take advantage of growing set of servers and services.

3.1 Ease of use

IDL improvements One of the original design goals was to eliminate the need for
client-side stubs for each procedure in a remote procedure call (RPC) environ-
ment. However, this design decision tends to push the complexity to the servers.
Integrating new software into NetSolve required writing a complex server side
interface definition (Problem Description File), which specifies the parameters,
data types, and calling sequence. Despite several attempts to create a user-
friendly tool to generate the Problem Description Files, it can still be a difficult
and error-prone process.

Therefore, we have implemented a simple technique for adding additional
services to a running GridSolve server. The interface definition format itself
has been greatly simplified and the services are compiled as external executa-
bles with interfaces to the server described in a standard format. The server
re-examines its own configuration and installed services periodically or when

Grid-Based Problem Solving Environments            219



it receives the appropriate signal. In this way it becomes aware of any ad-
ditional services that are installed without re-compilation or restarting. The
server reports the new service to the agent, and thereafter it can be used by
any GridSolve client.

3.2 Interoperability

Handling NATs A Network Address Translator [8] presents the same external
IP address for all machines within a private subnet, reducing the overall need
for unique IP addresses. NATs are often used by end-users as a way of pro-
viding multiple machines with network access without requiring that they all
be assigned unique global IP addresses. They are also sometimes used a se-
curity measure since it is difficult to make inbound connectivity to a machine
behind a NAT. However, this causes problems for services such as GridSolve
such as: IP addresses may not be unique, IP address-to-host bindings may not
be stable, and hosts behind the NAT may not be contactable from outside. To
address these issues we have developed a new communications framework for
GridSolve. To avoid problems related to potential duplication of IP addresses,
the GridSolve components are identified by a globally unique identifier specified
by the user or generated randomly. To allow inbound connectivity to GridSolve
servers behind a NAT, a GridSolve proxy executable is distributed with the
software. If enabled, a GridSolve server will use the proxy to channel all com-
munications, keeping a connection to the proxy open at all times. This makes
the server usable by clients that would not have been able to connect to the
server otherwise.

Firewall concerns To handle firewalls in a more adaptive manner, GridSolve now
restricts itself to specific ports for communication. The ports can be specified
in the execution environment, allowing communication over any port, including
the default HTTP port if necessary, since this port is almost always setup to
allow traffic through a firewall.

GridRPC API The GridRPC API was made the core API for GridSolve, en-
abling compatibility with other Grid programming efforts such as Ninf-G or
DIET. Additional capabilities such as the Matlab API are built on top of the
GridRPC API. The older NetSolve API is also build on top of the GridRPC API
to allow backward compatibility for users that did development using NetSolve.

3.3 Extensibility

Supporting backend resource managers In the older NetSolve system, backend
resource and execution managers such as Condor and OpenPBS were supported
by creating a specialized server for that environment and compiling it into the
server. Though effective, this method was cumbersome and required knowledge
of the internals of the code. In GridSolve, supporting different backends has
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been made easier by defining a interface that requires three scripts for ser-
vice initiation, probing and cancellation. These scripts are specified within the
service description, easily allowing any library routine to be run either on a
backend or directly on a GridSolve server.

Disconnected Operation Since some of the backend resource managers (e.g.,
batch queues) may take a substantial time to execute an application, GridSolve
has been extended to support disconnected operations. After a GridSolve service
request has been submitted asynchronously, the user can request a serialized
representation of the service request. This can be saved, and then used to return
to the service at a later time.

Scheduling enhancements GridSolve will retain the familiar agent-based schedul-
ing of resources [13], but in some cases the client has additional knowledge about
the appropriate set of resources. Therefore we are implementing an infrastruc-
ture that allows resource filtering to be optionally performed by the client. In
the older NetSolve system, the only user-provided filter that affects the selection
of resources is the problem name. Given the problem name, the agent filters the
available servers to select the those that can solve that problem, and then ranks
the servers. In the newer GridSolve system, the user can provide additional con-
straints on the filtering process, for example, a minimum memory requirement
or the availability of a database. Also, the client will have access to the com-
plete list of resources and their characteristics so that the user can implement
comprehensive scheduling algorithms in addition to enhanced filtering. To en-
able this functionality, a GridSolve server should provide as much information
as possible to the agent as free-form resource attributes. The agent then uses
the resource attributes to match the filtering request of the client.

Distributed Storage Infrastructure GridSolve supports a Distributed Storage
Infrastructure (DSI) API, allowing it to deal with large data in an efficient
manner. Using DSI, a client can deploy large data items, such as a vector or
matrix, into high speed network storage. Then, when calling a service, a handle
to the data can be transparently provided instead of the data item itself. This
allows the service to access the data quickly, and the service can reuse the data
from the network storage rather than fetching it from the client on each use. This
style of deployment could also allow the user to handle data that is too large
to fit into the memory of their local computer. Currently, DSI is implemented
on top of the Internet Backplane Protocol (IBP) [3] which provides middleware
for managing and using remote storage.

4 Related Work

Several Network Enabled Servers (NES) provide mechanisms for transparent ac-
cess to remote resources and software. Ninf-G [12] is a reference implementation
of the GridRPC API [11] built on top of the Globus Toolkit. Ninf-G provides
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an interface definition language that allows services to be easily added, and
client binding are available in C and Java. Security, scheduling and resource
management are left up to Globus.

The DIET (Distributed Interactive Engineering Toolbox) project [4] is a
client-agent-server RPC architecture which uses the GridRPC API as its pri-
mary interface. A CORBA Naming Service handles the resource registration
and lookup, and a hierarchy of agents handles the scheduling of services on the
resources. An API is provided for generating service profiles and adding new
services, and a C client API exists.

NEOS [7] is a network-enabled problem-solving environment designed as a
generic application service provider (ASP). Any application that can be changed
to read its inputs from files, and write its output to a single file can be integrated
into NEOS. The NEOS Server acts as an intermediary for all communication.
The client data files go to the NEOS server, which sends the data to the solver
resources, collects the results and then returns the results to the client. Clients
can use email, web, sockets based tools and CORBA interfaces.

Other projects are related to various aspects of GridSolve. For example,
task farming style computation is provided by the Apples Parameter Sweep
Template (APST) project [6], the Condor Master Worker (MW) project [10],
and the Nimrod-G project [1]. Request sequencing is handled by projects like
Condor DAGman [9].

However, GridSolve provides a complete solution for easy access to remote
resources and software. It differs from the other NES implementations by in-
cluding a tight, simple integration with client PSEs such as Matlab. Interface
descriptions for a variety of standard mathematical libraries are distributed with
GridSolve, and it is easy for additional services to be added. The ability to use
server-proxies to make it possible to leverage additional resource management
and scheduling environments also adds to GridSolve’s strengths.

5 Ongoing Work and Conclusion

GridSolve is still in an early release phase, as it has not yet implemented all
the functionality of its predecessor NetSolve. Some of the ongoing work in the
GridSolve project is described below.

– Currently the Matlab client bindings are available, and there is some work
done on generating client bindings for IDL (Interactive Data Language). Ad-
ditional languages such as Mathematica, Octave and Java still need to be
added.

– A small set of library bindings is currently distributed with GridSolve (i.e., a
subset of LAPACK and SuperLU). A more complete set of libraries bindings
(LAPACK, ScaLAPACK, SuperLU, ARPACK and PETSc) will be added.

– There is a Kerberos based security mechanism in the current GridSolve dis-
tribution. We are investigating other possibilities to enable better integration
with additional security infrastructures.
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– Ongoing research is investigating ways to use the history of service executions
to build an execution model for the services. These models are then used in
a more accurate scheduling of the services on servers.

– Since the GridSolve agent currently maintains information about all resources
in the entire system, it may be a scalability bottleneck as the number of re-
sources increases. We are investigating the use of multiple cooperating agents
to allow the GridSolve system to be scalable.

The GridSolve project has been designed to fit the needs of the general
community of scientists and engineers, to provide an easy to use interface to
Grid hardware and software resources. A GridSolve user is relieved of many
of the details that make using Grid resources awkward: finding the appropri-
ate resources, ensuring that the needed libraries are installed, submitting the
application to the resources, monitoring the execution of the application and
transferring results back to their SCE for further viewing and analysis.

The current version GridSolve incorporates major enhancements that are
based on real world experience and user feedback. These enhancements include
tolerance for NATs, accelerated performance, disconnected operation, improved
service setup and deployment, resource filtering and improved scheduling.
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Q&A – Asim YarKhan 

Questioner: William Gropp 
What extensions did you need for GridRPC? 

Asim YarKhan 
GridRPC needed certain extensions to allow the fault tolerance and resource 
scheduling that GridSolve/NetSolve presents to its users. Currently, in 
GridRPC, resource binding is done when a function handle is created.  
However, the data to be submitted is only presented later at call time, which 
means that if the basic GridRPC API is used we cannot use data information 
(e.g. size) in making scheduling decisions. Similarly, for transparent fault 
tolerance, we may want to change the resource used within a call.

Comment: William Gropp 
These seem like significant flaws in GridRPC spec -- and an excellent 
example of the perils of premature standardization. 

Questioner: Bill Applebe 
In Vgrads how is the issue of "versions" of an application being dealt with, 
where different compute environments support different versions or 
configurations of an application? 

How does the user specify the version and how are local libraries used by 
the application located? 

Asim YarKhan 
Currently VGrADS does not provide internal support for the automatic 
deployment of a compute environment needed for services.  An end user 
must deploy the services and required libraries as needed.  VGrADS 
provides hooks to Gridftp to make it easier to deploy software onto the virtual 
grid after the physical resources have been allocated. 

Questioner: Anne Trefethen 
What types of applications are running using Gridsolve? 

Asim YarKhan 
GridSolve/NetSolve provide access to a large collection of numerical libraries 
including LAPACK, ARPACK and ScaLAPACK, and these routines can be 
used directly by an end-user. However, most of the larger applications 
created by external users fall into the class of task-farming services.  These 
range from diesel engine design using genetic algorithms to statistical 
methods for working with MRI data.  A more complete list can be found on 
the GridSolve website. 



Questioner: Anne Trefethen 

Does the latest version run on MSCCS? 

Asim YarKhan 
The latest version of GridSolve does not run on the Microsoft Compute 
Cluster, however, completing the port to the Microsoft Compute Cluster is our 
next goal. 

Questioner: William Gropp 

Do you validate data to ensure safety from buffer overflow problems (e.g., 
sparse data structures)? 

Asim YarKhan 
GridSolve does not currently validate the data. 

Questioner: Marc Garbey 
Has there been any experience with distance teaching using the system? 

Asim YarKhan 
There has been some work using NetSolve as a teaching tool (see the Active 
Netlib project http://icl.cs.utk.edu/active-netlib/ ), however this is an area that 
needs to be further explored. 
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Abstract. TH is a test harness to facilitate the development of 
scientific software. The operational model is the comparison of the results 
from running two versions of an application code to ensure the results are 
equivalent. First, TH is installed into an existing application code that runs to 
completion on a set of data. Installation tools provide a readily-modified 
default initial configuration. The application code with TH installed is run in 
generate mode to create a monitored data file. A second version of the 
application with TH installed is run in check mode, comparing the current 
results with the original results. Features include specifiable criterion for data 
comparison, and a design that facilitates the installation of TH into codes 
written in any programming language and in parallel SPMD codes. Once 
installed, TH can be deactivated, permitting the same code to be maintained 
with and without the test harness in use. 

1 Introduction 

TH is a test harness to facilitate the development of scientific software, currently 
in Fortran. The test harness is based on the operational principle that the coder wants 
to ensure the software is producing the “same” results before and after some changes 
were made to the software, or between the software running on two different 
platforms. The test harness is used by taking an existing scientific application code 
that runs to completion on a set of data, inserting “include” lines by hand or by script 
for large application codes. The instrumented application code, with an input file 
specifying the variables that are to be monitored, is analyzed by a software tool 
called the builder. The builder tool creates from provided template files the 
application-specific “include” files needed to run the application software with the 
test harness installed. The application code with the test harness installed is then run 
in generate mode to create a data file against which modified versions of the 
software or versions on different platforms are run to detect any significant changes 
in the results. 



The various runs of the software might use different versions of the application 
code with the test harness installed into them in the same way. Typically scientific 
applications may be enhanced to improve efficiency, to improve capability, to verify 
the correct porting to a different platform, to modernize the code, or to check the 
results with different compiler options, typically optimization flags. The test harness 
compares current values of data variables with previously obtained values and 
reports only those that are “significantly” different. The coder only specifies the 
variables whose data values are to be recorded and compared, and the criterion and 
tolerances for the comparison; writing and reading the past values and all 
comparisons are implemented by the test harness, and the test harness reports 
significant differences that violate the comparison criteria. 

In contrast, comparisons by hand of results before and after comparable runs are 
tedious, error-prone, very difficult, or often impractical because of the different 
impacts of rounding errors. The test harness addresses this issue by providing data 
comparators that under programmer specifications check for near-identity rather than 
identity, comparing results based on relative or absolute tolerances, or both. 
Comparisons for arrays are facilitated by array comparator routines provided by the 
test harness. When differences are detected, the diagnostic information printed 
indicates what the tolerances should be to pass the checking procedures and the first 
element in array element order that is significantly different. In addition, as needed, 
the comparators can be made to ignore any differences. 

The paper describes the test harness, its operation, its testing, and experience with 
it in testing various application codes. In section 2, more detail is provided on how 
the test harness is to be used; in section 3, the tools as well as the input to these tools 
that build the test harness into the application are described. Section 4.0 describes the 
tests that have been used to evaluate the test harness; Section 5.0 describes the plans 
for future enhancements to the test harness and Section 6.0 provides a summary and 
conclusion. 

2.0 The Problem and the Test Harness Concept 

A problem encountered by many code developers and code maintainers is to 
determine whether a large code continues to operate correctly or in the same way as 
it did in the past after modifying or enhancing it. The modifications or enhancements 
might be, for example, to improve the code’s efficiency, add new features, compile it 
with different optimization flags, or make modifications that permit it to run on a 
different architecture. In such scenarios, the code developer has a collection of test to 
rerun and wants to ensure that the code behaves the same way where the changes 
should have no effects on the numerical results. 
 The test harness is a tool to aid in this testing process. Often even modest changes 
such as rearranging computations or performing them in a different order will change 
the results numerically. Comparing numerical results by hand is a tedious and error-
prone process in which in many cases all the results are different but only by a 
amount consist with the stability of the numerical computation. The test harness is a 
tool that permits the comparison of two sets of results using error tolerances 
specified by the user. The current version of the test harness permits the comparisons 
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of pairs of variables (scalars, arrays, or structured objects), one from a version of the 
application code run in “generate” mode and the corresponding variables from a 
version of the code run in “check” mode. The comparisons to be performed are 
specified by giving the variable by name, the subprogram or program the variable is 
in, the location of the comparison (for example, on entry to a procedure, exit from a 
procedure, or at any arbitrary point in a procedure), and the tolerance used for the 
comparison. 

Control of the comparisons and what is compared is specified by input to the 
harness tool builder.  The tool creates modifiable application-specific “include” 
files and a module with module procedures containing the comparator code. The 
comparator code is in a separate module that can be readily modified by the coder to 
handle special cases but the typical ordinary cases are provided by default in this 
separate module. In this way, unusual comparisons, say for combinations of specific 
elements of arrays or non-intrinsic derived types can be coded into this separate 
module and references to them can be placed in specific “include” files as needed. 

2.1 The Approach in Detail 

Figure 1 illustrates the modes of operation of the application code with the test 
harness installed. The figure assumes the test harness has been installed in two 
versions of the application code. The flow on the left shows the application code  

Figure 1: Operation of the Test Harness 

with the test harness installed into it where the test harness is run in “generate” 
mode. The application code reads its input and performs all of its computation as 
usual, producing its usual output. The test harness records the values of the variables 
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that it is monitoring in an unformatted sequential file. The recorded data includes 
both application code values and data from the test harness, representing the 
execution sequence of the monitored procedures. The test harness performs certain 
consistency tests, providing diagnostics when it detects errors. In addition, it 
accumulates and prints the frequency counts, execution times, and data sizes written 
by each monitored application procedure (these are indicated in Figure 1 with an 
asterisk on the printed output line from the test harness). This latter computation and 
output can be turned off by input to the test harness. 
 The flow on the right shows the application code run in check mode. The diagram 
is essentially the same except that the test harness reads the monitored data generated 
from the unformatted file created from the test harness code run in generate mode. 
However, the test harness runs in a different way; this time, it compares the values of 
the monitored variables with the data from the unformatted file. The comparisons are 
performed as specified to the builder tool and any variance from the specified 
tolerances are analyzed and diagnosed on a separate output error unit, specified to 
the test harness. The analysis process prints the value that the tolerances must be to 
pass the comparison tests and recommends whether the comparison should use a 
relative or absolute tolerance criterion. In addition, the test harness again generates 
frequency counts and execution times, providing an indication of the cost of the 
monitoring and evaluation, particularly when compared with the similar data 
generated by the test harness in generate mode (this output is indicated by a plus on 
the printed output line from the test harness icon in Figure 1). 

The operation of the application with the test harness installed implies a 
relationship between the flow in generate and check mode. This relationship is that 
the two runs (likely with different versions of the application) must visit the same 
monitored procedures in the same order. Consequently, the monitoring must be with 
variables and procedures that are not expected to be vastly different in structure. This 
is often the case for changes that involve differences of optimization, code 
modification for efficiency improvements, and a whole host of other practical 
reasons why the codes are different. 

To detect only differences in code flow, the test harness can installed in both 
versions so that it monitors no application data but monitors only code flow through 
the monitored procedures; this is sometimes very useful to know in diagnosing the 
cause of different results in two codes that are supposed to produce the same results. 

Figure 2 shows the kinds of “include” lines added to a main program; these 
“include” lines are required in the main program but are only needed in procedures 
whose data or operation is being monitored. The “include” lines are similar for any 
subprogram unit selected for monitoring. An “include” line is required for each 
additional probe point and each exit from a procedure being monitored. No 
application-code data need be monitored, in which case the TH is recording and/or 
comparing an execution trace of the application code through the monitored 
application subprograms. 

Currently, the “include” lines are inserted by hand. The particular “include” lines 
depend on whether the procedure is an internal procedure, module procedure, and 
external procedure. Also, the “include” line insertions are different for F compliant 
code [1] versus Fortran 90/95/2003 [2] compliant code. The “include” line insertions 
are specified in detail in the User’s Guide [3] for the test harness; a future tool, 
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currently designed and partially implemented, will perform the required insertions in 
all procedures of an application and will monitor all eligible variables that are 
potentially referenced by the procedure and potentially defined by the procedure at 
entry points to and exit points from the procedure. As shown in Figure 2, the 
“include” lines are spelled with the keyword “binclude”, in order to distinguish them 
from Fortran include lines; whether they are spelled “binclude” or “include” or some 
other way is specified in the input to the builder tool. 

Once the procedures for monitoring are selected, the variables in these procedures 
are determined. The “include” lines are inserted, and the builder tool builds the 
application specific “include” files. Then an includer tool is run in one of two ways; 
one way builds the application with active version of the “include” files illustrated in 
Figure 1; a second way builds the application with the test harness disabled or 
inactive, thus providing a production version of the application code where there is 
no interference from the test harness. These alternative ways of generating 
executable code permit one version of the code to be maintained and at application 
build time, the user has the choice of building the application for testing or 
production.  

Figure 2: Installing the Test Harness in the main program - an example 

2.2 The Usage Scenario 

Figure 3 illustrates the use of the test harness over time, with time progressing from 
the left side of the figure to the right side; also the code is being developed and 
enhanced as time progresses. The figure actually depicts the development of the 
builder tool itself. Initially, an earlier version of the application code has the test 
harness installed into it; this is depicted at the left of the figure. A test suite is 
obtained or developed for this early version and the application code with the test 
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installed and activated is run in generate mode for all the test cases. With the test 
harness in the application code, the application code is modified, being improved in 
efficiency or capability, or just ported to a different machine. The code is then run in 
check mode with the same test cases and the new results are compared with the 
previous results. When corrections are made, the code is rerun and the results 
compared again until the results are acceptable. 

Figure 3: Test Harness Usage Scenario 

At some point, what is monitored may be changed (as indicated in the left middle 
of the figure) and maybe new test cases are developed; at such a time, the application 
with the test harness installed is rerun in generate mode, creating a new collection of 
recorded results, which are then compared to evaluate the effect of the further 
changes and enhancements. Occasionally, changes will be made that cannot be 
monitored with the test harness (for example, changes that cause monitored 
execution flow to be different between the code run in generate mode and check 
mode) unless what is monitored is changed; this is depicted in the figure just left of 
the middle of the figure. Finally, the code reaches a state where its performance is 
satisfactory (extreme right of the figure) and it is put into production. The test 
harness can remain installed in the code but made inactive ready for future activation 
and further evaluation when investigating new test cases. 

The above scenario was followed in the development of the builder tool itself. An 
early version of the test harness was installed in the initial version of the builder tool 
code. The builder tool uses floating point computations sparingly but the test harness 
allows comparisons of data values of all intrinsic types; comparisons for identity of 
integer, logical, and character values immediately indicated unexpected in parts of 
the code that used to work before certain enhancements were made. 

Once the test harness is installed in an application, it measures and displays the 
execution times and counts of the monitored subprograms, and the sizes of the check 
data created by each monitoring probe. This information is useful in controlling the 
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size of the check data files. This becomes a problem either because the place where 
the data is monitored is executed too frequently or the data monitored is too 
voluminous. Although the test harness has been successfully used to monitor data 
where the check data file became as large as 10 gigabytes, the monitoring process 
may be timing consuming and may need to be curtailed. 

To curtail the size of the monitored data, the frequency that each probe generates 
or check its data may be decreased. Also, for arrays, the elements that are monitored 
may be specified so that an entire array is not monitored.  For each of these changes, 
the test harness has to be reinstalled into the application using the builder tool to 
implement the changes. 

In addition, the comparison routines can be replaced by comparators that compare 
norms of matrices or compute condition numbers and compare them, or evaluate the 
differences in the result in any desired way. Such replacement comparators may be 
motivated to reduce the monitored data sizes but may also be motivated to focus on 
the comparisons of significant aspects of the computation that are particularly 
meaningful to the application. In each of these cases, the test harness has to be rebuilt 
into the application code by rerunning the builder tool. 

3.0 Installation of the Test Harness in an Application Code 

The installation of the test harness into an application code requires three steps. 
First, the “include” lines are inserted into the application code as per the instructions 
given in [3] and exemplified in Figure 2. Typically, three or four “include” lines are 
inserted per procedure monitored; the text of the “include” files USE statements, 
CALL statements, testing harness initialization code, and test harness cleanup code. 
In addition, an “include” line is needed for each probe that is additional to those at 
each entry and exit point from each procedure monitored. Any number of additional 
probes can be inserted at any desired points. 

The second step is to prepare the input to the builder tool. It is typically one input 
file (the builder can be run on parts of the application code but each run of the 
builder tool requires an input file). This input file specifies the following: 

The input file containing the application code with inserted “include” lines. 
The output file containing the application code modified appropriately to use 
the test harness. 
The input directory containing the template “include” files 
The output directory containing the specific “include” files activating the test 
harness. 
The output directory containing the specific “include” files for an inactive 
test harness. 
The “include” line keyword used in addition to BINCLUDE processed by 
the builder tool; if it is spelled “include”, it will process Fortran INCLUDE 
lines and if blank or spelled some other way, it ignores the contents of the 
Fortran INCLUDE files. 
“code” blocks specifying 

o the name of the procedure to monitor 
o the variables monitored on input to the procedure 
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o the variables monitored on exit from the procedure 
o the variables monitored at each specific named probe point 

For each variable monitored, the relative error tolerance (relative to machine 
epsilon) and the absolute error tolerances can be specified; if not specified, the 
tolerances are zero, requiring identity to pass the comparison tests. There are a 
collection of other properties that can be specified, such as lower bounds for arrays 
and selected ranges of elements of arrays to check (required for assumed-size 
arrays). 

The third step is to run first the builder tool with its input and then the includer 
tool with its modest input (location of directories, input file, output file, and logical 
unit specifications to avoid portability problems with the tools specifying 
input/output units not supported in the same way the default units are assumed to be 
used). The result of running both tools is either the application code with an activated 
test harness installed in it or an inactivated test harness. In the first case, the 
application can then be run using the scenario exemplified by Figures1 and 3. Code 
enhancements should be implemented in the version of the code after the first step 
above so that the enhancements can be installed without repeating the building steps 
unnecessarily. 

3.1 Code Insertion into the Application Code 

The code lines inserted by hand are “include” lines. However, there is a minor 
difficulty in this process when the insertion point is prior to any labeled statement, 
like a RETURN, END, or STOP. In addition, there is no place to insert a probe after 
an IF statement test but before the object of the IF statement is executed. The 
problem is that the insertions are essentially INCLUDE lines referring to files 
containing executable code and must be on a separate line, as required by the Fortran 
language. To make code insertions in these case, the code has to be restructured 
using block IF constructs or labeled CONTINUE statements. 

As mentioned in 5.0, an additional tool is under development that will insert the 
required lines in specified places, avoiding such changes by hand. This tool is rather 
complex because it also is creating default variables to monitor. Refer to 5.0 for a 
complete description of this and other tools being planned. 

In all cases, the source form of the inserted code satisfies both the requirements 
of fixed form Fortran source or free form Fortran source. Thus, the application code 
can be written in either free or fixed source form and in Fortran 77, Fortran 90, 
Fortran 95, Fortran 2003, or F compliant code. The compiler used to compile the 
application code with the test harness installed must be either a Fortran 90/95/2003 
or F compliant compiler. 

3.2 Building the Test Harness from Templates 

The builder tool builds the test harness into the application by processing 
template “include”. Typically, the builder creates a large number of such specific 
include files and places them in a separate directory, called the active directory. A 
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second directory of “include” files is created by this tool, which is referred to as the 
empty or inactive “include” files. A second tool, called the includer, is then run 
which builds the complete application from the directories of files created by the 
builder tool. The input to the includer tool specifies which directory of specific 
“include” files are to be used, building the application using either the active test 
harness or the inactive test harness. 

The template files are in detail in [4]. 

3.3 Test Harness Input 

The test harness input is read from standard input by default and specifies the 
following items: 

The test harness mode; the mode is either generate, check_and_continue, or 
check_but_terminate. The mode check_and_continue continues to the 
completion of the application code no matter what violations of the 
comparison tolerances are detected. The mode check_but_terminate 
terminates after the completion of the checking for a probe when the first 
difference violating the comparison tolerances is found. 
Print performance execution times or not. The execution time for each 
monitored procedure is printed. 
Print storage information in generate mode. This information includes the 
size of the data in the unformatted file generated per procedure; the unit size 
is processor-dependent but on most systems is either a byte or single 
precision or default real word. 

A named input file can be provided to override the input/output units used by the 
test harness and avoid conflicts with those units used by the application. If not 
provided, default units are selected. These units specify the test harness input 
described above, the unit for debugging output, the unit for the unformatted check 
data file, and error diagnostic unit. 

3.4 Performance Of the Test Harness Tools and the Harness Itself 

The builder and includer tools perform their builds very quickly, typically in 
considerably less time than it takes to compile the code, with or without the test 
harness installed. 
 The test harness itself does impact the performance of the application code but 
that depends very directly on the amount of data monitored and the speed of the 
input/output system. For modest data sizes, say less than a few megabytes, the 
performance penalty is at most a few seconds; in generate mode, it is hardly 
noticeable; in check mode, it is typically less than 3 seconds. It is more in check 
mode because reading unformatted files takes longer and the comparison checks, 
especially for large arrays, can take some time. As another measure of performance, 
the test harness added approximately 30 seconds to an application run when creating 
a 10 gigabyte test file while the application code ran for approximately 10 minutes 
with and without the test harness code activated. 
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 As suggested above, performance is very dependent on how much data is being 
monitored. To see how much data is being generated and how long it is taking, the 
test harness should be run, specifying in its input, “performance” and “storage” in 
generate mode and “performance” in check mode. Analyzing the tables of storage 
sizes and performance per procedure will provide an understanding of where the 
large data and costly performance is coming from. As mentioned above, decreasing 
the recording and checking frequency, decreasing data monitored per procedure, or 
decreasing the number of procedures monitored can address performance issues, if 
and when, costly performance issues are encountered. 
 Performance timing is always an issue and is very system dependent. The test 
harness code uses one of three alternative timers; a Fortran 90 timer, and two 
alternative timers that are available on many Unix/Linux systems. The timing 
performance procedures are in a visible separate module and are selected by 
commenting out Fortran lines. In addition, your own reliable timer can be substituted 
for any of them, provided the module procedure returns time in units of seconds. The 
Fortran intrinsic procedure CPU_TIME is used by default. 

4.0 Experiences with Testing the Test Harness 

The tests performed to date have been of varying sorts. First, five serial codes 
taken from a tutorial for PARAWISE from Parallel Software Products Inc [2]. The 
tutorial involved the use of test codes implementing a simple 1-D Jacobi algorithm, a 
2-D heat conduction and diffusion problem, a 2-D steady state flow prediction code, 
a simple unstructured mesh algorithm, and the serial version of the NAS-PAR 
benchmark APPLU. All five application codes were written Fortran 77 using fixed 
source forms. Each code was then rewritten completely using Fortran 90/95 
constructs to the fullest extent, and in particular arrays and modules, including the 
conversion of block data subprograms to modules. In addition, the source code of the 
Fortran 90/95 versions is written in free source form. The tests involved running the 
original Fortran 77 code in generate mode and the Fortran 90/95 code in check mode, 
comparing the results. In all cases, after fixing various errors in the initial conversion 
process, the two versions create consistent or comparable results as measured by the 
test harness. 

In two of these codes, the results were most interesting. In the NAS-PAR 
benchmark, the initial results showed a drastic difference after fixing the conversion 
errors detected by the test harness. The cause of the final differences was the use of 
intrinsic function SUM to perform sums rather than use of loops to perform the 
summations. After several runs using the test harness, the cause of the difference was 
quickly rectified by using the loop form of the computation rather than the SUM 
intrinsic in the sense that the differences were reduced to small numbers of rounding 
errors. 

Using the test harness with the 2-D steady state flow prediction code represented 
a second interesting test case. The input data set used, if run for a large enough 
number of iterations, shows numerical instability. The original Fortran 77 and the 
converted Fortran 90 versions display the instability at different numbers of 
iterations. Using the test harness, one is able to monitor the instability and see how 
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the two versions exhibit the instability at different points in the run. The differences 
are again attributed to the use of intrinsic functions rather than code loops and can be 
exposed in the comparative runs using the test harness. 

These five test cases are interesting from another aspect. Although the Fortran 90 
codes are drastically different than the original Fortran 77 codes, the computation 
order remained the same using the same input test file. This was partially 
accomplished by not monitoring data in places and procedures where the execution 
sequences were different between the two versions of the code. But it also illustrates 
that major changes in code structure can be performed without distributing the 
execution sequences in a way that matters to the monitoring. 

Initially, a parallel SPMD code was used in developing the design of the test 
harness. Quickly, it became apparent that a solid serial version was needed first and a 
version for parallel SPMD code would readily follow. However, the parallel code 
test harness code has not been tested with the latest version of the test harness, 
desiring to complete the various needed tools for serial code before addressing in 
detail the parallel code issues. 

4.1 Installation Tests 

The test harness is distributed with five installation tests. The simplest one is 
manufactured test code (that is, constructed to test a few difficult corners of the 
testing process) but it otherwise is performing silly computations. In particular, the 
test uses external procedures with entry procedures, both functions and subroutines, 
including recursive procedures. It is written in two forms, fixed and free source form. 

A second set of manufactured installation tests is a collection of 32 programs, 
one of which is the above test. These additional tests include internal procedures, 
module procedures, modules, internal and entry procedures in module procedures, 
and recursive procedures, both functions and subroutines. Also, several of the tests 
use test code that is F compliant where the “include” lines, to remain F compliant, 
are required to be different. 

Several of these 32 tests check a rather nasty implementation issue with the test 
harness. The test harness operates by creating internal procedures within the 
application procedures that perform the generation of the check data files and 
comparison of the check data files with data from the application when in check 
mode. This approach is used so that the scope of application procedure is inherited 
by the harness procedure and thus has access to application data environment 
without the use of common blocks or long lists of arguments. But because Fortran 
does not permit internal procedures within internals procedures, this approach had to 
be replaced by generating code in line to create and read the check data files. In both 
cases but particularly in the latter case, there is the possibility that variables created 
for use exclusively by the test harness clash with (have the same names as) 
application variables. To avoid this conflict and consequent limitation, the generated 
variable names may be prefixed by a user-specified letter string that is specified by 
the user to avoid name conflicts. Several of the test cases test this capability. 

As a final point, these manufactured test cases can be used as tutorial examples; 
they illustrate the locations and forms of the inserted “include” lines that are inserted 
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into the codes depending on the procedures and modules, including entry procedures, 
used in the application code. 

4.2 Installation Application Tests 

Three of the five application codes are also provided as installation tests. They 
include the simple 1-D Jacobian code which consists only of a main program and can 
again be used as an example to follow and study. The other two application 
installation tests are the APPLU NAS-PAR code and the 2-D steady state flow 
prediction code that shows the instability with the test input file provided. It is 
valuable and informative to look at how the tolerances where specified and had to be 
relaxed so that the test harness would allow the Fortran 90 version to complete 
execution.

4.3 Documentation 

The documentation consists of an overview description [4] of the test harness and 
a User’s Guide [3]. This overview describes the motivation and objectives of the test 
harness tool, its input, its default output, and its debugging output. It describes the 
tests in detail that were used to develop the test harness and the role and purpose of 
each of the “include” files inserted into the application code. Finally, it lists the 
planned enhancements to the test harness for the next year or so. 

The User’s Guide gives detailed instructions on where and what include lines 
need to be inserted into the application code. The User Guide also describes the 
builder tool’s input, which specifies the procedures to be monitored, the variables in 
those procedures to be monitored, and the particular probes monitoring those 
variables. Along with the variables are specified their type, kind, rank, and 
dimension information, how much of an array is to be monitored, the tolerances for 
performing the comparisons (an absolute tolerance, a relative tolerance, a 
combination of both, and for arrays, whether the comparison is element-wise or with 
respect to a norm). In addition, the builder input specifies the frequency each 
particular probe is executed and debugging information printed (the compared data 
can be printed but is not recommended in general). 

5.0 Future Developments and Plans 

Finally, the following planned enhancements of the test harness are in design and 
partially implemented: 1) an additional tool to automate the insertion of the 
“include” lines into arbitrary Fortran code and generation of two builder input files; 
one that monitors no variables but provides builder input for all procedures in the 
application, and secondly one that monitors all input and output variables to all 
procedures of the application; 2) portable data formats for all checked data; 3) a C 
implementation of the template files, permitting C or mixed Fortran/C applications to 
be monitored, and 4 ) support for parallel SPMD MPI codes. 
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5.1 Portable Numeric Formats 

There are currently two candidate libraries of procedures being investigated to 
support portable numeric formats; HDF5[6] and netCDF[7]. The plan is to select one 
of these and provide the libraries with the distribution to support one of these 
portable formats. With these formats, comparisons of results between different 
platforms will be facilitated; currently one has to use with formatted input/output 
which is not very satisfactory; unformatted input/output is processor-dependent and 
does not port in general between platforms. 

5.2 Enhancements to the Support Tools 

The very tedious and error prone aspect of installing the test harness in a large 
application is the insertion of the “include” lines and the preparation of the builder 
input files, specifying the variables is to be monitored, their properties (rank, shape), 
and the error tolerances. This represents a problem for two reasons; the first is it 
involves the preparation of many lines of files, and secondly, when they are wrong, 
the diagnostics by the builder tool, the compiler, or test harness itself are obscure and 
vague, because the errors can only be detected long after reading the input files 
where the error is present. To overcome this problem, a third tool has been designed 
and is partially implemented at the time of writing this paper. The tool will insert the 
correct “include” lines, modify the application source code to avoid the problems 
with labeled STOP, RETURN, and END statements, and IF statements. Secondly, it 
will create sample builder input files that can be readily modified by the user but will 
supply a list of all input and output variables for all procedures in the application. 
Thus, the new tool performs a sufficiently complete analysis of the application 
software to generate the need code and avoid the need to have redundant 
specifications from the user. Future versions of the tool will limit the building of 
these files to selected procedures specified by the user. 

This tool will be written in portable Fortran 95 and available in all distributions. 
It essentially has to create a complete symbol table for the application, including the 
attributes of the variables needed to insert the test harness in the application code. 
However, this implementation is viewed as a reference version that will specify the 
functionality of the tool; efficient, compiler-specific implementations will likely 
follow that use the symbol tables generated by the compiler. The tool will be written 
using an API that will permit the development of symbol-table access procedures to 
any particular compiler, thereby taking advantage of the efficiency, robustness, and 
reliability of compiler-generated symbol tables that the reference version is unlikely 
to ever exhibit. 

Once the design and reference implementation is complete, consideration of an 
implementation that uses a graphics-user interface and menus integrated into a 
Photran[6] environment will be considered. Such an implementation would then take 
advantage of the existing and upcoming tools supported by the Photran environment, 
permitting the development of an integrated maintenance environment for large 
application codes. 
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5.3 A C Version of the Test Harness 

In its current form without the new tool described in 5.2, the dependence on 
Fortran is limited mainly to the template file used to create the application specific 
“include” files. The builder and includer tools restrict their knowledge of Fortran to 
its line continuation rules in the main. Thus, to create a version of the test harness for 
C and mixed Fortran/C codes, the template files need to be rewritten in C. 

5.4 A SPMD Parallel Version of the Test Harness 

The original idea for the test harness came from trying to debug a parallel SPMD 
code. The test harness’s design was to support such code but has not been 
implemented on such code because the serial capabilities at the time were missing 
and were also needed for an SPMD implementation. Consequently, the plan is to 
revisit the development of code for such applications; the main issue is that each 
processor must create its own check data file and be able to read it in check mode. 
As with the serial version, the easiest and most frequently needed case is that each 
processor executes the code in the same execution sequence between the original and 
modified codes. Many codes behave this way and for these cases, a parallel version 
of the test harness is planned. 

6.0 Implementations 

Version 0.6 of the test harness has been installed and tested on the following 
platforms: 

Linux X86 using the NAG f95, GNU g95, and PGI pgf90 compilers 
Linux EM64T systems using the NAG f95 and GNU g95 
SUSE Linux and AIX using the IBM xlf95 
Cygwin using the NAG f95, GNU g95, CVF and Lahey Fortran 
compilers 
Windows XP using the CVF, Lahey, and Intel Fortran compilers 

Version 0.6 of the test harness with documentation and installation tests is available 
on CD from the author. 

7.0 Summary 

A test harness for comparing versions of scientific computational software has been 
developed. Its main features including the comparison of floating point data by 
comparators that report only significant differences in the computed data. The 
criterion used to measure differences is based on relative and absolute tolerances 
specified by the user. The test harness is very effective at determining that 
modifications and enhancements to versions of application code maintain the same 
results as with previous test cases without performing tedious hand comparisons on 
pages of data. 
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Q&A – Brian Smith 

Questioner: William Gropp 
Why did you choose HDF5 instead of another library such as netCDF?? 

Brian Smith 
I had the HDF5 library recommended to me by various colleagues at UNM 
and NCSA and was not aware of the netCDF library. I was attracted to HDF5 
by the fact that the source is available for creating implementations on 
essentially arbitrary combinations of compilers and operating systems on 
which the test harness is to be used.  The most effective compiler I use for 
diagnosing non-standard Fortran is the NAG f95 compiler.  Unfortunately, the 
NAG compiler diagnosed the use of several non-standard features which I 
have not had the opportunity to correct and for the time being I have given up 
trying to use HDF5. My understanding from discussions after my 
presentation is that other people have experienced the same problems and 
recently a revised source of HDF5 is available that avoids these difficulties.  
Also, during the discussions, I became aware that netCDF is simpler than 
HDF5 and in addition is not as comprehensive as HDF5 but has the 
capabilities I need for the test harness.  I will now look into both systems. 

Questioner: Ian Reid 
Can this tool be sensibly used during porting as well as during development? 

Brian Smith 
Yes.  The test harness was designed with porting in mind and is 
straightforward to use to evaluate the correctness of a port. First, the source 
code is written in portable Fortran -- a Fortran 90, Fortran 95, and an F (a 
restricted subset of Fortran 95 that encourages the use of safe Fortran 
constructs) compliant versions. The source code has been tested currently 
on over 10 platforms. Secondly, the code created by the tools to install the 
test harness in the application code is Fortran 90 and F compliant, and is 
written in a manner to simultaneously be both fixed and free source form 
compliant, assuming very modest free source form requirements such as 
lines no longer than 72 characters. 

But there is one caveat. Clearly, the tool is only as effective in this role as the 
test cases are comprehensive in testing the code for a correct port. The 
effectiveness of the test harness relies on the coverage of the test cases; if 
the test cases cover the areas that evaluate the portability of the code, the 
test harness will perform the tests and compare the results, indicating 
whether the original results are the "same" as the results on the machine to 
which the code is being ported. 



Questioner: Jim Pool 
Are any of the five test cases you mentioned library programs we might 
recognize? 

Brian Smith 
Yes and no.  The application tests are five standard numerical applications: a 
simple 1-D Jacobi algorithm, a 2-D heat conduction and diffusion problem, a 
2-D steady state flow prediction code, a simple unstructured mesh algorithm, 
and the serial version of the NAS-PAR benchmark APPLU. The first three 
test application codes are distributed with the test harness software and are 
used as installation tests. In addition, there is a simple test case on the 
distribution disk that tests the installation of the test harness in external 
procedures with entry procedures and a second set of 32 test cases that test 
the use of the test harness with various other Fortran 90/95 constructs such 
as internal procedures, and module procedures with entry procedures in 
various configurations. Finally, I am currently evaluating the test harness 
using a commercial code of over forty thousand lines of Fortran 77 code. 
This code is large enough that installing the test harness in the code and 
creating the input files for the builder tool is tedious and error prone. To 
overcome this problem, I have designed and begun the implementation of a 
tool which analyzes the application code, creates the needed input files for 
the builder tool, and with the builder tool installs with test harness in the 
application code without requiring hand modifications. 

Questioner: Boyana Norris 
Have you considered using tools such as the Program Database Toolkit 
(PDT) for generating a language independent program representation? 

Brian Smith 
No. But as a consequence of your question, I will look into this toolkit and see 
how I can use it. 

Questioner: Boyana Norris 
Are there plans to add support for languages other than Fortran? 

Brian Smith 
Yes.  Certainly C.  For the builder and includer tools, a C version of the test 
harness is straightforward, I believe.  It includes rewriting the template files in 
C and involves rather modest modifications to these two tools, mainly to 
impose C line continuation rules rather than Fortran rules. For the new tool 
which installs the test harness into code, a completely new implementation is 
required because it is essentially a lexer and parser.  However, the current 
version of this new tool is designed to use access procedures to a symbol 
table generated by a compiler.  Re-implementing this new tool for C code 
implies the access procedures need to be rewritten; hopefully, the design of 
the rest of the tool is such that very little of it depends on the details of the 
programming language. 



Questioner: Marc Garbey 
When code is run on different architectures the difference in numerical 
results may be the result of ill-conditioning; is there a quantitative test for this 
problem? 

Brian Smith 
Yes and no.  Such quantitative tests depend on the application. For example, 
such tests are known for many linear equation and matrix eigensystem 
computations. Such tests depend on the existence of sensitivity analysis for 
the application. For the linear equation problem, for example, condition 
numbers provide the crucial mechanism. Other application areas have similar 
sensitivity analysis available. The point, though, for the test harness, is that 
the evaluation/comparison procedures used by default by the test harness 
are replaceable with code using the same interface. Alternatively, because 
the test harness code that calls the evaluation/comparison procedures is 
accessible (embedded in the application code), the user can replace calls to 
these evaluation routines to calls of procedures of his/her own so that codes 
using sensitivity analysis, such as condition number generators, can be 
called and used to evaluate the numerical results with respect to ill-
conditioning. 

Questioner: Wayne Enright 
You used the terms "numerically indistinguishable" and "equivalent" when 
comparing solutions from different versions of a code. How do these differ 
and how hard is it to decide if they apply? 

Brian Smith 
I use these terms to distinguish between two situations which unfortunately 
are very similar. I reserve the word "equivalent" to mean two results are 
considered the "same" because they differ by only a few units in the last 
place and typically I have no error or sensitivity analysis that would suggest 
that large differences are expected.  I reserve the word "indistinguishable" for 
cases where, because of an error analysis or sensitivity analysis, I can 
predict expected differences and the observed differences are less than the 
predicted differences. Thus, the differences are related to whether I can back 
up observed differences with analysis. The difficulty thus in deciding which 
applies is easy, but often the required analysis is hard or nonexistent. 



Tuesday PM Panel Discussion 

Panel
 Asim YarKhan 
 Brian Smith 
 Keith Jackson 
 Xiaoge Wang 

Questioner: Ron Boisvert 
What do you think will ultimately be the "sweet spot" for scientific/numeric 
grid services, not only from a technical point-of-view, but more importantly 
from a business viability point-of-view? For example, will services only 
provide access to monolithic applications, or would individual lower-level 
numerical library routines ever make a viable service? 

Keith Jackson and Asim YarKhan 
It is hard to specify such a "sweet spot".  It might be that when the online 
services provide some additional value, beyond the direct answer to a user 
request, then end users will be drawn to it; for example, if the numerical 
routines can embed additional expert knowledge, or can provide accuracy 
analysis. 

Brian Smith 
Personally, I cannot see how a business supplying just low-level numerical 
routines and a service that supports them can be commercial success. The 
main reasons are that the market for such an activity is not large enough (the 
market is mainly the vendors that manufacture central processing units and 
there are not a lot of them) and many people believe that such low-level 
routines can be created from following algorithms published in the literature 
and can be obtained from open source repositories. The vendors thus hire 
experts in the field to develop their own low-level libraries and maintain them 
over the lifetime of their particular computational architectures. 

Where I think there is a potential "sweet spot" for scientific/numeric grid 
services is in the evaluation of solutions provided by the grid services. The 
solution sought by the application users are typically a solution to an 
equation or model of some kind.  Software that uses the grid to evaluate a 
solution against a set of properties the solution must satisfy and provides 
some sensitivity rating for the solution would be very valuable. Such 
evaluations could be done a priori and with cycles that are potentially 
abundant over the grid. However, the creation of software to perform such 
evaluations on demand is not available now and needs research by our 
community to develop such software. 



Comment: Brian Ford 
The sweet-spot may be providing mathematical support to the grid users who 
come knowing they themselves do not have the necessary mathematics 
background -- providing that support for them and enabling them to introduce 
"the solutions" in their environment. 

Asim YarKhan 
There are some projects to recommend the appropriate algorithm based on 
the input data sets.  For example, the SALSA (Self-Adapting Large-scale 
Solver Architecture) project analyzes the input sparse matrix and uses 
statistical knowledge and heuristics to recommend the appropriate solver for 
the data.  GridSolve will add libraries such as this to its remote solving, thus 
pushing the expert knowledge into the solver rather than expecting the end-
user to provide it. 

Brian Smith 
Yes. I agree but again new initiatives are needed to develop the software that 
can support applications in this way. It is not clear to me how to do it but is 
that not want research initiatives are supposed to answer for us? 

Comment and Question: Jim Pool 
What Brian Ford has suggested requires the numerical software to return 
more than a simple solution as in current libraries. In GridSolve and using 
Python wrappers have you had to modify routines or would you have 
preferred modified routines? 

Keith Jackson and Asim YarKhan 
GridSolve has generally not modified the numerical routines for its use. 
However, at the University of Tennessee, we have various projects to 
provide added value to numerical libraries by embedding some expert 
knowledge or self-adapting algorithms (see the SALSA and SANS efforts at 
http://icl.cs.utk.edu/iclprojects/ ). 

Brian Smith 
I have had no experience with modifying software for this purpose or using 
such software. 

Comment and Question: Patrick Gaffney 
Allowing a user to specify their problem in the language of their own problem 
domain opens up for the possibility that the specification is numerically 
unwise; for example "I want to invert a matrix.” How do you propose to 
address this issue with Web services? 

Keith Jackson 
I believe the service writers are going to have to become smarter. The 
service itself should check for situations like inverting a matrix and inform the 
user that what they are doing is unwise. Currently numerical codes are 



written assuming a high degree of sophistication on the part of the users. As 
we move more towards a service based architecture, that assumption is no 
longer going to hold. This will be a large adjustment for the people who write 
numerical codes, but it will also open their usage to a much broader 
community. 

Brian Smith 
We have long had to deal with this problem and in general try to either warn 
the user that such computations are numerically unwise or not make it easy 
for the user to perform such computations. Possibly, in the environment 
where the numerical software is reporting back to the user how sensitive the 
computed solution is to rounding errors or changes in the input data, such 
unwise numerical computations will become more apparent to the user. 

Comment: Ian Reid 
The sweet-spot is likely to be solving widely applicable problems not 
wrapping sub problems (for example, BLAS routines). This, I think, stems 
from what Brian Ford mentioned. 

Comment: Jim Pool 
It was a decade between the development of AMDLIB (Applied Mathematics 
Division Library) at ANL and the emergence of NAG and IMSL. It requires a 
long time to transition from demonstration to acceptance and then 
commercialization. 

Questioner: Wayne Enright 
Do you feel that the type of verification checks on condition estimates we can 
determine for a particular data-set/problem can be automatically returned (at 
a cost) on available as a post-processing step? 

Brian Smith 
I do not think we have the algorithms and software to do it today, but I think 
given the need for such condition estimates and the computational resources 
now readily available to compute such estimates, we need to perform the 
research to investigate how to do this for a wide variety of problems. The 
issue in the past, in my opinion, is the scarcity of resources to perform such 
evaluations made doing so unattractive; computational resources are more 
plentiful now and in addition the need for solutions you can stand behind and 
vouch for is now becoming an issue for software producers. 

Questioner: Bill Applebe 
Can numerical software design make use of experience in commercial 
software verification and validation? 

Brian Smith 



I find this difficult to answer. From my experience, verification and validation 
for most commercial software means extensive testing and evaluation, often 
using regression tests extensively. Numerical software, if carefully prepared, 
does the same verification and validation. But where numerical software is 
backed by sound mathematical analysis, more can often be done. In 
addition, such testing for numerical software can be enhanced by the using 
identities and mathematical relationships that must be satisfied by the 
computed solution. As mentioned earlier, the Grid computational 
environment gives us an opportunity to do more of that kind of testing, 
providing our users with more robust and reliable software and solutions.   

Questioner: Brian Ford 
Is the separation between the group pressing for final digit accuracy in their 
answers and the group likely to use the grid who are perceived to be looking 
for reliable and solved problems a distinction recognized in the computer 
solution market? Can this be marketed? 

Brian Smith 
Is the separation between the group pressing for final digit accuracy in their 
answers and the group likely to use the grid who are perceived to be looking 
for reliable and solved problems a distinction recognized in the computer 
solution market? Can this be marketed? 

Comment: Marc Garbey 
Solution verification is becoming a serious issue since Mechanical 
Engineering is often taught using software only. Important design decisions 
are set with no serious verification. The Grid gives an additional opportunity 
to solve this problem. 

Comment: Craig Douglas 
The educational system has failed. Students do not know enough about math 
or computer science to do computational science or Grid computing. They 
know XML, but have no knowledge of C, C++, Fortran or any historical 
programming language or model. 

How can they be expected to know even how to get an answer, much less 
know if it is wrong, correct, or inconclusive? 

Comment: Bill Applebe 
Verifying package codes is somewhat easier as techniques such as "grid 
independence" (runs on multiple grid scales) or a comparison on two 
different commercial packages can be used. 

Questioner: William Gropp 
Debugging was mentioned by several of the speakers 



What can be done to aid in the debugging of web services and grid 
components? Should support for debugging be part of the design? 

Xiaoge Wang 
It would certainly be very helpful if there is something that can help with 
debugging. But on the other hand, using a provided service may not always 
match the thing in the user's mind. There is more or less different between 
custom-made and off-the-shelf things. So, it may need the application 
developers to be more "tolerant" or flexible in the application design. In the 
real world, a feature in someone's opinion may be thinking of as a bug by 
someone else. It will be very difficult in debug when using services. 

Brian Smith 
Yes. Debugging should be part of the design. Mainly, I think the web services 
and grid components should have a mode, like a verbose mode, that returns 
information to the user about the progress of the service or component. The 
user, after gaining some experience with situations where the services and 
components are behaving both correctly and incorrectly, can adjust what 
services he/she uses when and how he/she uses the services.  In return, it 
would enhance the information back to the developers when the user 
complains about a service or component not working properly.  Secondly, the 
verbose mode should be designed to report on user requests that are 
incorrect, can not be fulfilled with the resources available in a reasonable 
time, or tax the system in ways that will cause the requests to be delayed or 
take considerable time. Such information is useful to the user so that he/she 
can tailor their use of the services and components in the most effective way. 

Questioner: William Gropp 
To Brian Smith: 
Based on your experience with TH, what features would aid in providing 
debugging services? 

Brian Smith 
In terms of debugging over a grid, the biggest single debugging problem is 
an old serial (and parallel) code problem -- uninitialized memory. Grid 
computing exacerbates the problem because the resulting code does not 
port and it is extremely difficult to detect that this is the cause of incorrect 
results. Most systems have special local techniques to detect uninitialized 
memory but a uniform, across-the-grid, methodology to address this issue 
would be a great help. 

Comment: Bill Applebe 
What is needed is the ability to easily instrument the code without modifying 
the source to log/profile data and generate visualizations (St Germain has it). 



Comment: Boyana Norris 
Automated debugging support in SIDL-based CCA components is being 
developed (allowing the component application execution to be "replayed") -- 
similar approaches should be possible for services or other component 
systems. 

Comment: Keith Jackson 
The NetLogger project I mentioned earlier has some simple tools that will 
automatically add logging information at each function entrance and exit. 
This currently supports, C, C++, Fortran, and Python. 
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Abstract. We describe three different dynamic data-driven applications 
systems (DDDAS): an empty house, a contaminant identification and tracking, 
and a wildland fire. Each has something in common with all of the rest and can 
use some common tools. Each DDDAS is quite complicated in comparison to 
a traditional static input simulation that is run with large numbers of inputs 
instead of one longer run that is self-correcting. 



1 Introduction 

We quote from the 2005 dynamic data-driven application systems (DDDAS) 
National Science Foundation solicitation [1], “DDDAS is a paradigm whereby 
application (or simulations) and measurements become a symbiotic feedback control 
system. DDDAS entails the ability to dynamically incorporate additional data into an 
executing application, and in reverse, the ability of an application to dynamically 
steer the measurement process. Such capabilities promise more accurate analysis and 
prediction, more precise controls, and more reliable outcomes. The ability of an 
application to control and guide the measurement process and determine when, 
where, and how it is best to gather additional data has itself the potential of enabling 
more effective measurement methodologies. Furthermore, the incorporation of 
dynamic inputs into an executing application invokes new system modalities and 
helps create application software systems that can more accurately describe real 
world, complex systems. This enables the development of applications that 
intelligently adapt to evolving conditions and that infer new knowledge in ways that 
are not predetermined by the initialization parameters and initial static data. The need 
for such dynamic applications is already emerging in business, engineering and 
scientific processes, analysis, and design. Manufacturing process controls, resource 
management, weather and climate prediction, traffic management, systems 
engineering, civil engineering, geological exploration, social and behavioral 
modeling, cognitive measurement, and bio-sensing are examples of areas likely to 
benefit from DDDAS.” See also [2] for numerous examples and clear definitions of 
what makes a system a DDDAS. 

As small groups, we are working on three kinds of DDDAS critical infrastructure 
projects funded by the NSF: 

ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for 
Disaster Management. The emphasis is on wildland fire modeling, 
simulation, prediction, and a major milestone is to provide real-time 
information to people fighting actual fires. The final test of the project will 
be to do a full scale test with a prescribed burn of a mountainside in 2008-
2009. 
ITR: Collaborative Research: Predictive Contaminant Tracking Using 
Dynamic Data Driven Application Simulation (DDDAS) Techniques.
Multiscale data-driven algorithms and software to easily move data from 
sensors to computers potentially far away has been developed. 
DDDAS-TMRP: Collaborative Research: Adaptive Data-Driven Sensor 
Configuration, Modeling, and Deployment for Oil, Chemical, and 
Biological Contamination near Coastal Facilities. Consider a networked 
drone operating off a coast that recognizes oil in water. Upon detection and 
alerting the simulation, by dynamically loading into the drone sensor a 
chemical library specific to hydrocarbon pollution, the sensor can search for 
chemicals that will identify the source of the hydrocarbons.  For example, a 
diesel-driven ship may have sunk nearby, or a fishing boat may simply be 
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leaking fuel. 100LL would indicate a small downed aircraft.  Depending on 
the sensor result, very different computations can be done: trace where the 
ship or aircraft sank and alert rescue, or trace where the boat sailed and 
what its travel route was to identify the boat and mitigate the problem. 

The remainder of this paper is organized as follows. In §2, we describe features that 
are common in DDDAS. In §3, we describe a whimsical DDDAS that would make a 
good commercial product for the modern American home. In §4, we describe a 
contaminant tracking DDDAS based on a set of movable drones in water bodies. In 
§5, we describe a wildland fire DDDAS. Finally, in §6, we offer some concluding 
remarks. 

2 What Is in a Typical DDDAS 

DDDAS environments require new software capabilities for application modeling 
and composition, dynamic runtime, resource management, data management, and 
measurement control aspects, as well software architecture drilling across all layers 
and end-to-end software infrastructure. The DDDAS program solicitation includes a 
comprehensive list of challenges and has inspired the scientific community, as 
exemplified by DDDAS projects that have started to address these and other related 
challenges.  In our own DDDAS projects, we have identified several relatively 
diverse areas that have common issues that must be addressed by DDDAS: computer 
science, informational, and computational sciences that lead to significant impact for 
addressing important problems. These include: 

1. Effectively assimilating continuous streams of data into running 
simulations. These data streams most often will be… 

a. Noisy but with known statistics, and must be incorporated into the 
model using stochastic methods, such as filters and smoothers. 

b. Received from a large number of scattered remote locations and 
must therefore be injected into a usable computational grid. 

c. Missing bits or transmission packets, as for example is the case in 
wireless transmissions. 

d. Injecting dynamic and unexpected data input into the model. 
e. Limited to providing information only at specific scales, specific to 

each sensor type. 
2. Warm restarting simulations by incorporation of the new data into parallel 

or distributed computations, which require the data but are sensitive to 
communication speeds and data quality. 

3. Tracking and steering (control of measurements, models, reporting results, 
and visualization) of remote distributed simulations to efficiently interact 
with the computations and to collaborate with other researchers. 

4. Translation components to rectify when simulation output does not directly 
match observational data. 
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5. Interpretation and analysis components to assist researchers with 
collections of simulations. 

6. Application program interface and lightweight middleware components for 
designing and creating a DDDAS or DDDAS problem solving environment. 

7. Better scheduling of computational and network resources so that multiple 
models, possibly running at different locations, can be coordinated and data 
can be exchanged in a timely manner. 

8. Virtualization and sandbox implementations for testing purposes and 
security.

DDDAS assumes that application components, resource requirements, 
application mapping, interfaces and control of the measurement system can be 
modified during the course of the application simulation. The diagram in Figure 1 
shows how a number of elements might dynamically interact with each other: Any of 
the components may change without resorting to a new simulation as the 
computation progresses. Many DDDAS applications are multiscale in nature. As the 
scale changes, models change, which in turn, changes which numerical algorithms 
must be used and possibly the discretization methods. DDDAS applications involve 
a complicated time dependent, nonlinear set of coupled partial differential equations, 
stochastic or agent-based simulation methods, which add to the complexity of 
dynamically changing models and numeric algorithms. It also causes computational 
requirements to change, particularly if dynamic adaptive grid refinement or 
coarsening methods are used, in response to the dynamically streamed data into the 
executing model. 

To support data management needs in our DDDAS projects, data acquisition, 
data accessing, and data dissemination tools are typically used. Data acquisition tools 
are responsible for retrieving of the real-time or near real-time data, processing, and 
storing them into a common internal data store. Data accessing tools provide 
common data manipulation support, e.g., querying, storing, and searching, to upper 
level models. Data dissemination tools read data from the data store, format them 
based on requests from data consumers and deliver the formatted data to the data 
consumers. Figure 2 illustrates a simplified view of the software framework of the 
DDAS system we are developing. In our implementation, the data used to drive a 
DDDAS system are retrieved periodically by a data retrieval service, extracted, 
converted, quality controlled, and then staged as dynamic inputs to our simulation 
models. The extraction process reads the retrieved data based on the meta data 
associated with them and feeds the extracted values to the conversion model whose 
major purpose is unit conversion, e.g., from inches to millimeters. The converted 
data are then analyzed for potential errors and missing values by the quality control 
model. This control process will ensure the correctness of the data, which is of great 
importance for the model simulation accuracy. The quality controlled data are then 
fed to the data storage model, which either saves the data to a central file system or 
loads them to a central database (this depends on project requirements). The data 
store model may also need to register the data in a metadata database so that other 
models can query it later. 
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Fig. 1. DDDAS processing [3] 

Fig. 2. Data acquisition, accessing, and dissemination software layout in a typical DDDAS 
project with n models 

DDDAS research projects have brought together multidisciplinary expertise, 
involving researchers from a number of fields to synergistically pursue research on 
creating DDDAS capabilities and environments. There is a learning curve that is 
nontrivial. DDDAS applications are usually complicated, getting data is usually 
difficult, and there is already large scale research ongoing using traditional, take 
initial data and just run a simulation some period of time, and look at the results. 

A community web site, http://www.dddas.org [4], has been developed by Prof. 
Douglas with help from about 50 other DDDAS-related projects. The site currently 
has a complete funded project list (from 2000 to 2006), virtual proceedings from 
workshops from 2000 through 2006 [5-8], a number of talks on topics that range 
from disaster management to transportation to homeland security to how a bat flies, 
news items, pointers to working DDDAS codes, and the January 2006 NSF DDDAS 
workshop report [9]. Most of the projects listed are from the United States, though a 
number of the projects have international partners and interest in DDDAS overseas 
has been increasing. 

3 An Empty House DDDAS 
In the United States, it is quite common for homes to be devoid of people for a 

significant number of hours per day (i.e., “My two cats really own the house.”). 
However, it is advantageous to have the home appear to be lived in and constantly 
occupied. A smart home is able to communicate with the owners and for sensors to 
be adjusted to the immediate situation, inside or outside. 
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We need sensors that can detect motion and identify individuals 
(pictorially and verbally). Depending on the first results from the DDDAS, 
the sensors will have to detect much more complicated data. Face recognition 
and some indication of the emotional state is one of the highly successful 
DDDAS projects [10]. 

We need to distinguish between animals, vehicles, regular visitors (wanted and 
unwanted), and irregular visitors. Each category requires its own computational 
model. Frequently, more than one model must be used in parallel. In fact, the way to 
implement an empty house DDDAS is two tiered: (1) object detection and 
identification, and (2) receiving information about a detected object (recognized 
friendly, recognized undesirable or unrecognized) and chooses an appropriate 
response. The two tiered approach reduces the load on the second tier so that 
resources are available for decision making and communicating with the owner and 
makes it easy to add extra (or new) models later. 

Animals can usually be ignored unless individuals are regular nuisances. Ones 
that live in the house and need to be let in (or out) are a special case and must be 
recognized as well as the animal’s intent. When the occupants are away for an 
extended period of time, the animals need to be fed and given water on a regular 
basis.

Vehicles on a driveway are the first point of identification of individual people. 
For example, recognizing the license plate or corporate identity (e.g., UPS) leads to 
running a model for acceptable visitors. A moving van might indicate house robbers 
and a call to the police might be warranted depending on what the people inside it do 
after getting out of the van. Smoke detection in or near the house obviously needs a 
call to the fire department. 

People walking up to a door (or window) provides a different recognition 
problem. Examples of walkers include the mailman or other deliver people, product 
sellers, house robbers, arsonists, and religious nuts. The former is welcome, but the 
rest are unwelcome and/or a serious threat to the integrity of the house. Being able to 
identify unwanted visitors and determine which ones will go away with a polite, but 
firm, “No,” is essential and nontrivial to model. A database has to be developed over 
time as the DDDAS is trained. 

For deliveries, a voice greeting needs to be generated, answers to common polite 
questions (e.g., how are you?), signing for a box or envelope, and directions given to 
what to do with a delivery. If the delivery is put into a secure box, the contents need 
to be transferred into the house either immediately or on a regular basis. The house 
occupants need to be notified of a delivery and who delivered it (using pictures or 
audio). If a delivery person cannot be answered by the DDDAS, the occupants 
should have the option of seeing, hearing, and talking to the delivery person in real 
time. Hence the DDDAS needs to be able to track the occupants seamlessly. Thus, 
two way, secure communications is required. 

Clearly the Household DDDAS is nontrivial, yet much of what is needed to 
produce a working one has been developed over the past few years in NSF supported 
DDDAS grants [4]. To make it work requires a set of sensors (motion detectors, 

260            Grid-Based Problem Solving Environments



microphones, and webcams), mechanical devices to move or rotate the sensors, face 
and vehicle recognition software, voice decoding, networking (at the house and with 
the occupants, wherever they might be), and parallel processing to run multiple 
models simultaneously. Yet the total cost of such a system is not very high thanks to 
most of the devices and software being either commonplace or already existing. It is 
a matter of assembling the pieces correctly and devising the DDDAS. This would 
make an interesting commercial product for installing in new homes where the cost 
would be dwarfed by construction and land expenses. 

4 Contaminant Tracking DDDAS 
The most infamous oil spill was the Exxon Valdez oil spill. It was the largest oil spill 
ever when it occurred, but is no longer ranks among the top 50 largest oil spills 
globally. Oil spills remain one of the largest threats to coastal water regions and 
water supplies. Yet even small oil spills can indicate different things, as noted in the 
DDDAS-TRMP project summary in §1. 

The DDDAS contaminant tracking system consists of sensors, a hydrodynamic 
and contaminant transport models, a data assimilation system, as well as computers, 
networks, and software to integrate the capabilities of the various components into a 
unified system for disaster management and mitigation. 

Our sensor is a Solid-State Spectral Imager (SSSI) designed to gather 
hydrological and geological data and then to perform chemical analyses. The sensor 
is small and light enough to be mounted on various roving platforms so it can be 
used in remote-sensing situations and can scan ranges of 10-100 meters in distance. 
Using a laser-diode array, photodetectors, and on-board processing, the SSSI 
combines spectroscopic integrated sensing and processing with a hyperspace data 
analysis algorithm. 

The SSSI detects and identifies contaminants in water using near-infrared (IR), 
visible, and ultraviolet light. Absorption, fluorescence, and even Raman 
spectrometry can be implemented, but absorption spectrometry is the most common. 
Virtually every organic compound (e.g., polycyclic aromatic hydrocarbons, 
paraffins, carboxylic acids, and sulfonic acids) has a near-IR spectrum that can be 
measured, including two classes of terrestrial biomarkers, lipids, and amino acids. 
Near-infrared spectra consist of overtones and combinations of fundamental mid-
infrared bands, giving near-infrared spectra a powerful ability to identify organic 
compounds while still permitting some penetration of light into samples. 

The SSSI has a modest amount of memory and computing capacity on board. 
The SSSI is reprogrammable in the field. When an interesting chemical trace is 
discovered, the reaction from the application overseeing the SSSI is two-fold: (a) 
invoke an appropriate application, and (b) request that the SSSI look for specific 
other chemical traces using other specific pulse sequences. There is a symbiotic 
relationship between the sensor network and the application simulation that is typical 
in a DDDAS. 

The SSSI uses Walsh-Hadamard or Complementary Randomized Integrated 
Sensing and Processing (CRISP) encoding sequences of light pulses to further 
increase the signal-to-noise (S/N) ratio. In a Walsh-Hadamard sequence multiple 
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laser diodes illuminate the target at the same time, increasing the number of photons 
received at the photodetector and the S/N. The Walsh-Hadamard sequence can be 
demultiplexed to individual wavelength responses with a matrix-vector multiply 
operation. CRISP encoding uses orthogonal pseudorandom codes with unequal 
numbers of on and off states. The duty cycle of each code is different and the codes 
are selected to deliver the highest duty cycles at the wavelengths where the most 
light is needed and lowest duty cycle where the least light is needed to make the sum 
of all of the transmitted (or reflected) light from the samples proportional to the 
analyte concentration of interest. 

The hydrodynamic model consists of the Spectral Element Ocean Model 
(SEOM) in its two dimensional shallow water version. The spatial discretization 
relies on the spectral element method, an h-p type finite element discretization, 
which relies on relatively high degree (5-8th) polynomials to approximate the 
solution within each element. The main features of the spectral element method are: 
geometric flexibility due to its unstructured grids, dual paths to convergence: 
exponential by increasing polynomial degree or algebraic via increasing the number 
of elements, dense computational kernels with sparse inter-element synchronization, 
and excellent scalability on parallel machines. The model can be forced through 
winds, tides, and lateral injection of mass at inflow boundaries (e.g., river input). The 
model is supplemented with an advection-diffusion equation to simulate the 
trajectory of contaminants as they are carried along by the simulated flow. 

Using multiple linear regression the Bootstrap Error-adjusted Single-sample 
Technique (BEST) classification algorithm can be performed in situ, allowing a 
rover to classify many samples, only notifying the simulation when an interesting 
substance is found. Once the spectrum of a sample has been collected, it must be 
classified to determine the substance present. Spectra recorded at n wavelengths are 
represented as single points in a n-dimensional hyperspace. In this scheme, similar 
samples produce similar spectra that project as probability orbitals or clusters into 
similar regions of hyperspace. The BEST metric is a clustering technique for 
exploring these distributions of spectra in hyperspace. 

An initial library can be computed based on substances likely to be found in the 
target environment. When a substance unknown to the BEST library is found, the 
sensor can sample nearby points with similar spectra to create a new library entry for 
the new substance. Scientists can determine the type of substance present by further 
analyzing raw spectra of the substance provided by SSSI and by using data from 
their other instruments, apply these data to update the simulation. The SSSI chemical 
library will comprise substances expected to be in the environment in which the SSSI 
operates. 

The initial deployment of the sensor and model focuses on estuarine regions 
where water quality monitoring is critical for human health and environmental 
monitoring. A sample tidal calculation will be performed using a grid that 
encompasses a bay or set of bays regions and possibly a river region. The model is 
forced with tidal elevation obtained from tide gauges. Runs without data assimilation 
have shown good comparison with observation and previous modeling results. 
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However, for DDDAS the use of data assimilation is imperative to inject 
observational data in the model while accounting for model and observational errors. 

The data assimilation reduces the computational errors associated with initial 
data, essentially the solution at previous time step, and improves the prediction. 
Using the first set of measurements, the approximation of the initial data is 
recovered. As new data are incorporated into the simulator, the initial data are 
updated using an objective function. We note that the formulated problem is ill posed 
because there are fewer sensors than the finite dimensional space describing the 
initial data. The objective function is set up based on both a measurement error as 
well as a penalization term that depends on the prior knowledge about the solution at 
previous time steps (or initial data). The prior information is refreshed using the 
updated initial data. The penalization constants depend on time of update and can be 
associated with the relative difference between simulated and measured values. In 
the simulations, both the prior and penalization constants change in time. 

To account for the errors (uncertainties) associated with sensor measurements, 
we consider an initial data update within a Bayesian framework. The posterior 
distribution is set up based on measurement errors and prior information. This 
posterior distribution is complicated and involves the solutions of partial differential 
equations. We could use a Metropolis-Hasting Markov chain Monte Carlo (MCMC) 
method to generate samples from the posterior distributions. However, a sampling 
with MCMC is expensive since it requires iterative steps and the acceptance rate is 
typically low. We developed an approach that combines least squares with a 
Bayesian approach that gives a high acceptance rate. In particular, we can prove that 
rigorous sampling can be achieved by sampling the sensor data from the known 
distribution, thus obtaining various realizations of the initial data. Our approach has 
similarities with the Ensemble Kalman Filter approach, which can also be adapted to 
an initial data update. 

Consider finding hydrocarbon fuel in a body of water.  Gasoline can simply be a 
sign of pollution from a small boat.  Heavier fuel oils could be an indication that a 
larger boat has a leak or sank recently nearby.  Jet fuel could come from a downed 
aircraft. The SSSI needs to be reprogrammed in the sunken vehicle case and a search 
and locate application must be invoked to find the accident and rescue any people 
that may be in danger.  Emergency services, the coast guard, and the news media 
may need to be automatically informed of progress. 

Oil droplets can travel nearly anywhere in the ocean. The droplet size exerts a 
major effect on droplet motion. The rise velocity of oil droplets extends from about 
2.5 10-7 m/s for a diameter of 2  m to 4.3 10-3 m/s for a diameter of 260  m. 
Droplets traveling at 2.5 10-7 m/s will ascend only 0.001 m and 0.02 m, over periods 
of 1 hour and 24 hours, respectively. However, droplets ascending at 4.3 10-3 m/s 
will climb 15 m and 370 m over equivalent periods. A vertical diffusivity of 51 cm2/s
will distribute oil droplets (equally upward and downward) about 6 m and 30 m over 
the same time. Therefore, the smallest oil droplets act as though they are neutrally 
buoyant, i.e., transported only by diffusion. However, buoyancy primarily advects 
the largest droplets. 
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Fig. 3. Schematic diagram of a wildland fire dynamic data-driven application system.: blue 
blocks are functional units and purple are data inputs and outputs 

5 Wildland Fireline Predictive DDDAS 
Our wildland fire DDDAS is built upon a previously existing coupled 

atmosphere-wildfire model. Components have been developed and added which (1) 
save, modify, and restore the state of the atmosphere-wildfire model, (2) apply 
ensemble data assimilation algorithms to modify ensemble member states by 
comparing the data with synthetic data of the same kind created from the simulation 
state, (3) retrieve, process, and ingest data from both novel ground-based sensors and 
airborne platforms in the near vicinity of a fire, and (4) provide computational results 
visualized in several ways adaptable to user needs. Fig. 3 presents the actual software 
structure. The observation function interprets the model variables in terms of 
observable quantities and produces synthetic data from the model state. The data 
assimilation compares the synthetic data and the real data, and adjusts the model 
state accordingly. 

The original modeling system is composed of two parts: (1) a numerical weather 
prediction model and (2) a fire behavior model that models the growth of a wildfire 
in response to weather, fuel conditions, and terrain. Both models are two way 
coupled so that heat and water vapor fluxes from the fire feed back to the atmosphere 
to produce fire winds, while the atmospheric winds and changes in humidity in turn 
drive the fire propagation. This wildfire simulation model can thus represent the 
complex interactions between a fire and the atmosphere. 

The meteorological model is a three dimensional non-hydrostatic numerical 
model based on the Navier-Stokes equations of motion, a thermodynamic equation, 
and conservation of mass equations using the anelastic approximation. Vertically 
stretched terrain following coordinates allow the user to simulate in detail the airflow 
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over complex terrain. Forecasted changes in the larger scale atmospheric 
environment are used to initialize the outer of several nested domains and update 
lateral boundary conditions. Two way interactive nested grids capture the outer 
forcing domain scale of the synoptic scale environment while allowing the user to 
telescope down to tens of meters near the fireline through horizontal and vertical grid 
refinement. Weather processes such as the production of cloud droplets, rain, and ice 
are parameterized using standard treatments. 

Local fire spread rates depend on the modeled wind components through an 
application of the Rothermel fire spread formula [11]. The heat release rate is based 
on [12] which characterizes how the fire consumes fuels of different sizes with time 
after ignition, distinguishing between rapidly consumed grasses and slowly burned 
logs. Within each atmospheric grid cell, the land surface is further divided into fuel 
cells, with fuel characteristics corresponding to the 13 standard fuel types [13]. Each 
fuel cell has four tracers, which identify burning areas of fuel cells and define the fire 
front. Fire spread rates are calculated locally along the fire as a function of fuels, 
wind speed and direction from the atmospheric model (which includes the effects of 
the fire), and terrain slope while a local contour advection scheme assures 
consistency along the fireline. The canopy may be dried and ignited by the surface 
fire, so a simple radiation treatment distributes the sensible and latent heat into the 
lowest atmospheric grid levels. 

The empirical fire model uses a submesh representation of the fire region. Within 
each cell on the fire model grid, a quadrilateral defines the burning region. The 
burning area in each grid cell is defined by the position of four moving points, called 
tracers. This representation makes the fire area hard to adjust in data assimilation.  
As a result, we have developed a translation of the tracers into a level function. The 
level function is given by values at nodes of the fire grid. The fire region is where the 
level function is positive. The absolute value of the level function is approximately 
equal to the Euclidean distance from the fireline. In data assimilation, the level 
function can be increased or decreased just like the physical quantities in the model 
and greatly simplifies the assimilation process. 

Ensemble filters work by advancing in time a collection of simulations started 
from randomly perturbed initial conditions. When the data is injected, the forecast 
ensemble is updated to get a new analysis ensemble to achieve a least squares fit 
using two conditions: change in the ensemble members should be minimized, and the 
data d should fit the ensemble members state u, h(u)  d, where h is called the 
observation function. The weights in the least squares are obtained from the 
covariances of the ensemble and of the data error. For comprehensive surveys of 
Ensemble Kalman Filters (EnKF) techniques, see [14-16]. In general, an EnKF 
works by forming the analysis ensemble as linear combinations of the forecast 
ensemble. This raises two concerns, especially in highly nonlinear models: if the 
change of state in the update is large there may not be suitable forecast members to 
make linear combinations of in order to match the data.  Hence, a linear combination 
of realizable states may not itself be a realizable state.  This results in the need for 
large ensembles, frequent small updates, and has the potential to break down due to 
nonphysical states being introduced. 
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Fig. 4. Comparison of the results of 4 methods of simulating 2-D growth of a fire 
using an ensemble of solutions where the vertical axis is temperature and the 2 
horizontal axes represent x- and y- spatial dimensions 

We were using filters based on the EnKF with data perturbation. The data 
assimilation always produced an ensemble with nonphysical solutions and so that the 
simulation always broke down numerically. Therefore, we have developed a 
regularization by adding a term involving the change in the spatial gradient of 
ensemble members to the least squares procedure [17]. 

Consider Fig. 4 [18]. The exact solution is shown in the upper left. The ensemble 
solution with a standard EnkF algorithm is shown in the upper right, which creates 
unstable and nonphysical solutions. An EnkF solution with stabilization with the 
Johns and Mandel (2004) method is shown in the lower left, which produces the 
best, physically realistic solution.  The solution of the ensemble without any data 
assimilation is shown in the lower right, in which the solution of the ensemble drifts 
away from the solution. 

Existing ensemble filter formulas assume that the observation function is linear 
and then compute with the observation matrix H. To simplify the software, we have 
derived a mathematically equivalent ensemble filter that only needs to evaluate h(u)
for each ensemble member. The ensemble update involves computation with 
extremely large, dense matrices. 
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There is clearly a need to adjust the simulation state by distorting the simulation 
state in space rather than employing an additive correction to the state. Also, while 
the position of the feature may have error distribution that is approximately gaussian, 
this is not necessarily the case for the value of the state at a given point. For this 
reason, alternative error models including the position of features were considered in 
the literature [19] and a number of works emerged that achieve more efficient 
movement of features by using a spatial transformation as the field to which additive 
corrections are made: a transformation of the space by a global low order polynomial 
mapping to achieve alignment [20], and two-step models to use alignment as 
preprocessing to an additive correction [21, 22]. We have proposed [23] a new 
method, a Morphing Ensemble that combines alignment and additive correction into 
a single step, using ideas borrowed from registration and morphing in image 
processing [24]. 

Data comes from fixed sensors that measure temperature, radiation, and local 
weather conditions. The fixed sensors, positioned so as to provide weather conditions 
near a fire, are mounted at various heights above the ground on a pole with a tripod 
base. The data logging and transmission electronics are buried in the soil in a 
protective box. Wiring to the sensors and antennae is insulated. This type of system 
will survive burn overs by low intensity fires. These sensors supplement other 
sources of weather data derived from permanent and portable automated weather 
stations. The temperature and radiation measurements provide the direct indication 
of the fire front passage and the radiation measurement can also be used to determine 
the intensity of the fire. The raw data is logged and transmitted as comma delimited 
ASCII text for easy use in spreadsheets. 

Data also comes from images taken by sensors on either satellites or airplanes. 
Camera calibration, an inertial measurement unit, GPS, and digital elevation data are 
used in a processing system to convert raw images to a map product with a latitude 
and longitude associated with each pixel.  The three wavelength infrared images can 
then be processed using a variety of algorithm approaches to extract which pixels 
contain a signal from fire and to determine the energy radiated by the fire. The 
original pixel values, the derived probability of fire in each pixel, and the latitude 
and longitude information are stored in a Data Center as GeoTIFF images. 

Data from previous fires are stored in a data center in GeoTIFF (images), Excel 
spreadsheet files, or text files (sensors). The Excel data is made more accessible by 
converting it to a comma separated value (CSV) format. GPS information is stored 
about each fixed-location sensor. Each sensor's data is time stamped to identify when 
the data was collected or received (if it comes without a time stamp). For mobile 
sensors, both the time stamp and GPS information is available. 

Data that comes into the data center must go through a process consisting of up 
to six steps:

Retrieval: Get the data from sensors. This may mean receiving data directly 
from a sensor or indirectly through another computer or storage device 
(e.g., a disk drive).  
Extraction: The data may be quite messy in raw form, thus the relevant data 
may have to be extracted from the transmitted information.  
Conversion: The units of the data may not be appropriate for our 
application.  
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Quality control: Bad data should be removed or repaired if possible. 
Missing data (e.g., in a composite satellite photo) must be repaired. 
Store: The data must be archived to the right medium (or media). This 
might mean a disk, tape, or computer memory, or no storage device at all if 
data is not being archived permanently or only temporarily.  
Notification: If a simulation is using the data as it comes into the data center, 
the application must be informed of the existence of new data. 

The data is related to the model by the observation equation h(u)  d. The 
observation function h maps the system state u to synthetic data, which are the values 
the data would be in the absence of modeling and measurement errors. Knowledge of 
the observation function, the data, and an estimate of the data error covariance is 
enough to find the correct linear combinations of ensemble members in the ensemble 
filter. The data assimilation code also requires an approximate inverse g of the 
observation function. For a system state u and data d, is the direction in which the 
system state can change to decrease a norm of the data residual. For an observation 
function that is simply the value of a variable in the system state, the natural choice 
of approximate inverse can be just the corresponding term of the data residual, 
embedded in a zero vector. 

Building the observation function and its approximate inverse requires 
conversion of physical units between the model and data, and conversion and 
interpolation of physical coordinates. In addition, synthetic data at instants of time 
between the simulation time of ensemble members need to be interpolated to the data 
time. Data is injected into the ensemble to minimize both a weighted sum of the data 
residual and the change in the ensemble. 

The data items enter in a pool maintained by the data acquisition module. The 
assimilation code can query the data acquisition module to see if there are any new 
data items available, request their quantitative and numerical properties, and delete 
them from the pool after they are no longer of use. The properties of the data items 
include 

a time stamp, 
encoding of the type and parameter values of the observation function and 
its approximate inverse, 
estimate of the error of the data, and 
the numerical values of the data itself. 

From the point of view of the assimilation code, all information about physical 
units, etc., is encoded in the observation function. 

Visualization of the model output as an image is accomplished by brightness, 
color encoding, and transparency for a visual indication of the location and intensity 
of the fire, and of the probability distribution of the forecast. 3-D visualization of the 
fire is more complex and complexity increases if high spatial resolution of the output 
is desired.  3-D visualization uses model output from the fire propagation code for 
the flame region and from the atmospheric code for visualization of smoke. 
Ensemble statistics are used for visualization of probability. 

The geographic output of the fire model in 2-D or 3-D is visualized in a number 
of ways: 
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For computer based mapping, manipulation, and visualization of the model 
output, file formats compatible with the geographic information system 
(GIS) products are generated. 
A PDF file: the output is a map generated for potential output as hardcopy 
view of the fire at a set point in time. 
A MPEG-4 (or similar format) file: the time varying output for both 2-D 
and 3-D is also used to generate a movie. 
A file appropriate for viewing as a layer on top of Google Earth [25]. 

Our Google Earth Fire visualization system (see Fig. 5) greatly simplifies map 
and image visualization. The user can control the viewing perspective, zooming into 
specific sites, and selecting the time frame of the visualization within the parameters 
of the current available simulation.

6 Concluding Remarks 
DDDAS is an interesting field that is trying to abstract into a science a number of 
previously treated areas. Data assimilation, control engineering, process control, 
cyber physical systems, and other buzzwords describe special cases of DDDAS 
(unless you are a researcher in these fields, in which case DDDAS is a special case 
of your own field). 

                                        

Fig. 5. Google Earth Fire Layering software tool: top left picture is what you get 
when clicking on Wildfires, top right picture is what you get by clicking on one of 
the fire symbols on the top left, and the bottom picture shows how the 3D layering 
appears 

Grid-Based Problem Solving Environments            269



There are many application areas in which data can be injected into a running 
process. Doing it right leads to applications that can run forever instead of simulating 
short periods of time using static, initial data. While long range predictions can be 
achieved (e.g., weather prediction) using many runs with different sets of initial data 
from slightly different initial times, it is not the same as running just one simulation. 

Making one traditional application starting from the static, initial data into an 
application that uses dynamic data to run a long time is good engineering. 
Abstracting what makes many different applications run as a DDDAS is good 
science, which is completely different. The purpose of the DDDAS program at the 
NSF is to do good science that is also good engineering. However, the list of 
DDDAS projects on http://www.dddas.org goes far beyond traditional engineering 
topics. 
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Q&A – Craig Douglas 

Questioner: Gabrielle Allen 
Can you explain more about what information you need about your 
application to apply the filters? 

Craig Douglas 
We need to know the physical and chemical properties that we are modeling 
as well as their error distributions. These are obviously highly problem 
dependent. 

Questioner: Brian Smith 
What do you do when you recognize the raw data is false? Do you adjust the 
algorithm (in the dynamic sense) to ameliorate the present data? 

Craig Douglas 
In our application, we throw completely bad data out. For data that is 
borderline, we are still trying to develop general techniques. 

In some applications, a human needs to be notified immediately. For 
example, in Afghanistan, if a Predator drone recognizes a high level human 
target, a person is notified at a military site to decide whether to allow a 
missile to take the target out in the next few seconds. 

In some applications, bad data means that a different model needs to be 
loaded and used. For instance, in a water body if we observe certain 
hydrocarbons, we can check for other chemicals to determine if the we are 
near a leaking tank of a floating boat or a sunken one. Different models need 
to be run to trace each case. 

Questioner: Marc Garbey 
Can you comment on the time scale in the coupling between sensors and 
simulation code? 

Craig Douglas 
An airplane flies over and takes pictures. Currently the plane has to land at 
an airport, have the disk drives moved to a computer connected to the 
Internet, and upload the pictures (hopefully preprocessed so that only 10-15 
KB is transferred per picture) to a data center. Data here is 1+ hour out of 
date.

A satellite takes pictures and takes 12 hours to download a composite jpeg 
file. Usually only part of the whole picture gets to Earth before the next set of 
pictures starts downloading. Data here is 12+ hours out of date. 



Ground sensors may be radioed in immediately to a local place at the fire. It 
might also record information and have to be retrieved by a person. It is hard 
to say how quickly the data will arrive (instantly to real soon now). 

Ideally, an airplane will have sufficient processing power to preprocess data 
in flight. Due to electromagnetic interference from the fire, the plane needs to 
fly away from the fire in order to reliably transfer data using a satellite 
transport system. Then the plane could return for more data collection with 
requests from the DDDAS for the actual locations of data collection. 

Questioner: Dennis Gannon 
Please explain the source of the "out of order" data problems? 

Craig Douglas 
Data comes in out of order due to the transmission methods. See 3 (M.  
Garbey). 

Questioner: Ron Boisvert 
Does the need to register aerial images of the forest fires pose any technical 
difficulties and uncertainty into the process? 

Craig Douglas 
No. This issue was dealt with over a number of years by the imaging science 
community. There is both open source and commercial software to handle 
this aspect of the project. We use open source codes based on GeoTIFF 
format pictures. 

Questioner: Bo Einarsson 
Is your system intended to assist the firefighters during the actual work of 
putting out the fire, or only to be used at a later evaluation? 

Both. Part of the proposal to the NSF was an offer to burn a mountain. We 
hope to do this, with help from the U.S. Forest Service, in either 2007 or 
2008.
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1 Abstract

The economically important Louisiana Coastal Area (LCA) is susceptible to
hurricane activity which is increasingly aggravated by the continuing erosion
of wetlands. Various programs are aimed at building sophisticated models of
meteorological, coastal, and ecological processes. The emerging paradigm of
Dynamic Data Driven Application Systems (DDDAS) can be applied to these
models leading to new scenarios for integrated, real-time simulations that in-
clude feedback control with sensors and simulations. This paper describes the
motivation and components for a comprehensive DDDAS for coastal and en-
vironmental modeling and the implications this has for scientific libraries and
high performance computing.

2 Introduction

The Louisiana Coastal Area (LCA) is one of the world’s most environmentally
damaged ecosystems. In the past century nearly one-third of the wetlands in
the LCA, approximately 4500 km2, has been lost. In its current state of decay,
it is expected that by 2050 only one-third of the wetlands in this region will
remain. Further erosion of the wetlands will be not only a massive environmental
catastrophe, but also adversely affect the livelihoods of millions of people.

The economic importance of the LCA is substantial, containing 25% of U.S.
coastal wetlands; 40% of contiguous U.S. salt marshes; 30% of U.S. total fish
catch; 17% of U.S. oil. Further, 25% of U.S. national natural gas supplies come
from Gulf coast waters. LCA ports handle more tonnage than any port world-
wide, and LCA is home to the only “superport” in the contiguous U.S.



Beyond economic loss, LCA erosion has devastating effects on inhabitants
of the coastal region, especially in New Orleans. This culture-rich city and its
surroundings includes over one million people, and lies in a basin 6 meters under
sea level, making it extremely vulnerable to hurricanes and tropical storms. On
29th August 2005 Hurricane Katrina (Figure 1) hit New Orleans, with storm
surge and flooding resulting in a tragic loss of life and destruction of property
and infrastructure. Soon after, Hurricane Rita caused similar devastation in the
much less populated area of southwest Louisiana, and once again parts of New
Orleans were under water. In both cases entire communities were destroyed.

Fig. 1. From left to right, satellite images of Hurricanes Katrina and Rita which
made dramatic landfall on the southeast US coast in 2005. Katrina resulted in the
loss of nearly 2000 lives and caused some $120 billion of property damage. The storm
size at landfall was 460 miles, with 145mph winds (Category 3), and storm surges of
up to 22 feet. [Image credits: MODIS Rapid Response Gallery]

The entire LCA is very amenable to comprehensive computer modeling. To-
day there exist many sophisticated models for this area with processes ranging
from ocean circulation and wave propagation to sediment transport and salin-
ity in wetlands. Typically these are isolated models, and currently there is no
established standard for tools that forecast an ecosystem response to restora-
tion projects. A generic approach that encompasses the entirety of a restoration
project’s goals, capable of simulating all relevant interacting processes from ero-
sion to storm surge to biodiversity in the ecosystem, is needed. This framework
would need the capability to integrate data from observation and sensor sys-
tems and a complete set of detailed computer models, With such a system, more
sophisticated decisions for short and long term planning and policy, as well as
for immediate emergency response can be made. Decision making would be im-
proved by using algorithms based on both data and detailed, realistic models
that can dynamically adapt to real-life scenarios.

An emerging paradigm in computational science that seeks to integrate data
streams and computational models, adapting them as needed to control or pro-
vide critical information about the behavior of complex systems is called Dy-
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namic, Data-Driven, Application Systems, or DDDAS [1]. DDDAS is finding
use in a vast range of complex problems, such as manufacturing supply chains
in business, forest fire control [2], or combustion in engines. All these problems
have complex systems that can in principle be simulated, and whose response
to inputs can be predicted. These responses can then be used to make decisions
that may affect or control the behavior of the system itself, or of other systems
that depend on it.

The LCA makes an ideal case-study for DDDAS capabilities, as coastal
properties change on relatively rapid time-scales. Unlike most ecosystems, due
to extensive levee, dam, channel, and controllable water diversion projects over
the last century, it is possible to regard the LCA as an experimental system.
The ecosystem can be, and is regularly, changed and regulated on time scales of
hours and days, providing unique opportunities for real-time data acquisition,
simulation, monitoring, and control.

To effectively model the LCA region, a much more comprehensive and dy-
namic approach than currently available is needed. This includes the ability
to couple models, invoke dynamic algorithms based on streams of sensor and
satellite data, locate appropriate data and computational resources, and create
necessary workflows on demand, all in real-time. Such an environment could
help better plan restoration strategies, improve ecological forecasting, place-
ment of future sensors, control of water diversion for salinity control, or pre-
dict/control harmful algal blooms, and support sea rescue, oil spill response,
and shipping forecasts. In extreme situations, such as approaching hurricanes,
results from multiple coupled ensemble models, compared with observations,
can be used for greatly improved emergency warnings. Input from sensors and
control of dams can be optimized to both improve the forecasts and actually
reduce flooding. The comprehensive modeling system must be able to handle
multiple time and length scales, from hours (storms) to years (restoration) and
from meters (estuaries) to kilometers (Gulf of Mexico).

This paper describes the motivation and components for a comprehensive
DDDAS for coastal and environmental modeling. Section 3 provides an overview
of DDDAS including two detailed application scenarios, Section 4 describes
different application communities that provide the scientific and operational
background for DDDAS systems, and Section 5 details requirements and needs
for the framework.

3 Dynamic Data Driven Application Systems

Simulation codes used today, across the physical and engineering sciences, typi-
cally allow only static workflows. Input data and parameter files must be created
in advance, and are read by the simulation code at start up, and after this point
the user can no longer interact with the running code, except to terminate a
run. Integration with observing systems, data archives, and experiments is usu-
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ally done manually if at all, through static, simplified input files, derived from
data archives.

DDDAS describes new complex, and inherently multidisciplinary, applica-
tion scenarios where simulations can dynamically ingest and respond to real-
time data from measuring devices, experimental equipment, or other simula-
tions. In these scenarios, simulation codes are in turn also able to control these
varied inputs, providing for advanced control loops integrated with simulation
codes. Implementing these scenarios requires advances in simulation codes, al-
gorithms, computer systems and measuring devices.

In 2000 the National Science Foundation held a DDDAS Workshop [3], which
included numerous application scenarios which could advance both science and
society by incorporating these ideas. Application areas described at the work-
shop included control of forest fires, predicting the spread of contaminants,
improving transportation systems and supply chains, and enabling oil explo-
ration. Recent developments in cyberinfrastructure, including data archives,
information systems, metaschedulers, etc, have helped provide surrounding in-
frastructure needed to implement some of these ideas in practice, which were
further developed in another NSF DDDAS workshop in 2006 [4].

In the remainder of this section we describe how DDDAS ideas can be devel-
oped and applied to specific problems in storm surge prediction for emergency
response and controlled water diversion for ecological purposes. From these
application scenarios, we derive a set of requirements on the computational
infrastructure, apply them to these and related problems, and suggest new al-
gorithms that need to be developed to advance DDDAS applications generally.
While motivated by these problems, many of the basic ideas and requirements
are common to other disciplines requiring DDDAS techniques, motivating the
need to develop a general DDDAS toolkit.

3.1 Event Driven Hurricane Predictions

When advisories from the National Hurricane Center indicate that a storm
in the Atlantic or Gulf of Mexico may make landfall in a region impacting
Louisiana, government officials, based on information provided by model pre-
dictions (Figure 2) and balancing a number of economic and social factors, must
decide whether to evacuate New Orleans and surrounding towns and areas. Such
advisories are provided every six hours, starting from some five days before the
storm is predicted to make landfall. Evacuation notices for large cities like New
Orleans need to be given 72 hours in advance. Here we outline a high level de-
scription of a complex DDDAS scenario, illustrated in Figure 3, which provides
hurricane predictions using ensemble modeling.

A suddenly strengthening tropical depression tracked by satellite changes
direction, worrying officials. The Louisiana Hurricane Center issues
an alert to state researchers and an advanced autonomic modeling sys-
tem begins the complex process of predicting and validating the hurri-
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Fig. 2. Forecasting the effects of hurricanes and tropical storms in a timely manner
is imperative for emergency planning. The paths and intensity of the devastating hur-
ricanes Katrina, Rita and Wilma [left] during 2005, as with other storms, are forecast
from five days before expected landfall using a number of different numerical and sta-
tistical models [right]. The validity of model predictions depend on many factors such
as the storm properties, location and environment.

cane path. Realtime data from sensor networks on buoys, drilling plat-
forms, and aircraft, across the Gulf of Mexico, together with satellite
imagery, provide varied resolution data on ocean temperature, current,
wave height, wind direction and temperature. This data is fed continu-
ously into a ensemble modeling tool which, using various optimization
techniques from a standard toolkit and taking into account resource in-
formation, automatically and dynamically task farms dozens of simu-
lations, monitored in real-time. Each simulation represents a complex
workflow, with closely coupled models for atmospheric winds, ocean cur-
rents, surface waves and storm surges. The different models and al-
gorithms within them, are dynamically chosen depending on physical
conditions (e.g., mud or sand bottoms) and required output sensitivity.
Data assimilation methods are applied to observational data for bound-
ary conditions and improved input data. Validation methods are used to
compare data between different ensemble runs and live monitoring data,
with tracking of data as it flows through the different solvers provid-
ing more information for dynamic decisions. Studying ensemble data
from remotely monitored simulations, researchers help steer computa-
tions to ignore faulty or missing input data. Known sensitivity to un-
certain sensor data is propagated through the coupled ensemble models
quantifying uncertainty. Sophisticated comparison with current satellite
data is made with synthesized data from ensemble models to determine
in real-time which models/components are most reliable, and a final high
resolution model is run to predict 72 hours in advance the detailed loca-
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Fig. 3. Predictions of the coastal response to hurricanes, including storm surge
and wave height, motivate a control system involving various data sources, human
interaction, and time limited scheduling.

tion and severity of the storm surge. Louisiana’s Office of Emergency
Preparedness disseminates interactive maps of the projected storm surge
and initiates contingency plans including impending evacuations and
road closures.

3.2 Ecological Scenario

A different DDDAS scenario, involving ecological processes, builds on unique
features of the Louisiana ecosystem, which is dynamically controllable via gates
in the Breton Sound diversion. When opened, this control diversion structure
allows the Mississippi River to flow into a wide area of threatened coastal wet-
land. Currently human intuition is the primary control factor for the gates,
targeted at controlling salinity, but this $150M diversion could be scientifically
controlled, through automated infrastructure linked to sophisticated models
and the increasing array of sensors and satellite images (Figure 4, ultimately
treating the whole wetland environment in Louisiana as a steerable DDDAS
optimization system.

High-resolution models, coupling hydrodynamic, geomorphic, ecological
and water quality components, are dynamically configured through uni-
form interfaces in a cascade of hydrodynamic models. Runtime toolkits
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enable dynamic injection of basin sensor data, at runtime, as it becomes
available. Results from ensembles of different model cascade combina-
tions, run across regional and national grids, are compared with actual
data, allowing optimal validity calibration, choosing the best model cas-
cade combination. Improved results from the hydrodynamic models ini-
tiate coupled high-resolution ecological models. These models generate
3-day forecasts for ecological conditions pertaining to chlorophyll con-
tent, nutrient concentration, salinity, and turbidity in the basin. These
biogeochemical attributes can be used to provide an index of potential eu-
trophication under specific control diversion structure operations; given
the set of real-time boundary conditions of the landscape (especially wind
fields). Measurements obtained from the sensors in the basin and com-
plementary satellite data in combination with model-model comparisons
could be used to assess and improve the efficiency of the models.

Forecasts from such a framework will help engineers provide ecologically
compatible flow conditions to enhance restoration while minimizing eutrophi-
cation problems. This is a step towards an automated control scenario, which
taken further, determines the optimal flow control variables to achieve desired
effects on different ecological parameters. This requires close interaction between
the sensors, operational structures and the dynamic modeling framework. More
complex scenarios such as effects of opening of multiple structures and their
combined effect on the ecosystem could be determined beforehand, thus pre-
venting unintended damages. An intelligent decision making system could then
mine results obtained by various permutations and combinations at all possible
levels and construct the optimal set of structure control parameters. Decisions
could be made based on results generated by such DDDAS frameworks to effi-
ciently control the diversion structures.

Numerous control diversion systems are planned, each costing of order
$150M. DDDAS capabilities could play an important role in optimizing the

Fig. 4. A complex ecological modeling DDDAS scenario designed for controlling river
diversions.
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operation, design and placement of future structures. An extensive monitoring
system is already in place, but is not yet linked to a modeling system. When the
DDDAS systems are in place, they will be able to optimize dynamic placement
of mobile sensors.

4 Synergistic Realtime Programs

We next describe three ongoing research and development programs (LPFS,
CLEAR, and SCOOP) which are active in developing coastal modeling, assess-
ment, and restoration projects in the Louisiana region. These programs form
the foundation for the DDDAS research we describe in Section 5 below, which
is aimed at advancing these and other programs that can benefit from these
techniques.

4.1 Lake Pontchartrain Forecast System

During Hurricane Katrina storm surge water from Lake Pontchartrain flooded
the city of New Orleans via breaches in outfall canals whose usual function is to
drain rain water out of the city. To ensure this does not happen during future
storms, the Army Corp of Engineers has developed a plan to close Interim Gated
Structures at the mouths of three canals (17th Street, Orleans, and London,
see Figure 5). However, closing these interim gates requires several hours and
cannot be undertaken when storm force winds are present. Further, closing the
gates should be delayed as long as possible, to allow the storm rain water to be
drained from the city.

The Lake Pontchartrain Forecast System (LPFS) [5] has been developed by
UNC, LSU and collaborators to provide timely information to the Army Corp
to enable their decision making for closing the canal gates. LPFS provides an
automated modeling system which is activated if an advisory from the National
Hurricane Center (which are disseminated every 6 hours during storm activity)
places the track of a storm within 271 nautical miles of the canal mouths (Fig-
ure 6). The system then deploys an ensemble of ADCIRC [6] runs (currently five
runs are used which are forced by different winds corresponding to the consen-
sus storm and 4 perturbations to this storm) on the compute resources of the
Louisiana Optical Network Initiative (LONI) [7] where mechanisms are in place
to ensure they have sufficient priority to complete within two hours. The results
from the ensemble are integrated together and disseminated via protected web
pages.

The operational, distributed LPFS system is providing an application use
case for developing new technologies and policies for priority driven and dead-
line based computing including a general notification mechanism, preemptive
scheduling on LONI, and dynamic application set threat levels to prescribe the
priority of model runs (Figure 9).
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Fig. 5. Visualization of New Orleans superimposed with levees and computational
mesh from the LPFS ADCIRC model. The three targeted canals (17th Street, Orleans,
and London) are shown leading into Lake Pontchartrain on the north side of New
Orleans. [Image credits: CCT Scientific Visualization group, Amanda Long, Werner
Benger, Ana Buleu, Shalini Venkataraman, Steve Beck].

4.2 Louisiana CLEAR Program

The Coastal Louisiana Ecosystem Assessment and Restoration (CLEAR) pro-
gram [8, 9] is developing ecological and predictive models to connect ecosystem
needs and opportunity with engineering design. CLEAR is concentrating on a
linked set of physical and ecological models. The physical models forecast end-
points of salinity, hydroperiod, and sediment distribution. From this geophysical
footprint, predictions are then made of geomorphic features and shifts in land to
water distribution. Ecological forecasts then simulate changes in habitat type,
habitat use and conditions of water quality. This set of linked models provides
the basis for an ecosystem forecasting system (geophysical processes, geomor-
phic features, water quality conditions, and ecological succession) which is used
to evaluate alternative designs of engineering projects based on the projected
response of the ecosystem.

The development and application of the models supports a strong adap-
tive management approach of existing and future projects, defining a body of
knowledge by which hypotheses and assumptions can be continuously evaluated
to incrementally reduce uncertainty in the model codes and thus improve the
accuracy of the ecosystem response.
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Fig. 6. The Lake Pontchartrain Forecast System deploys an ensemble of models to
provide predictions for water level and wind speed at the mouths of three New Orleans
Canals. The system is activated automatically if any of the ensemble tracks generated
from an advisory from the National Hurricane Center places the hurricane track within
271 nautical miles from the canal mouths (inside the red circle in this image), and
provides forecasts within two hours.

CLEAR has developed a modeling tool to evaluate restoration alternatives
along with environmental benefits using a combination of modules that predict
physical processes, geomorphic features, and ecological succession. The CLEAR
program is now continuing to develop conceptual and simulation models to fur-
ther develop an ecosystem forecasting system that integrates the elements of a
comprehensive monitoring and adaptive management program within the LCA
to evaluate environmental benefits in the coastal ecosystems of the Mississippi
Delta. This system will help answer such questions as what will happen to the
Mississippi River Deltaic Plain under different scenarios of restoration alterna-
tives, and what will be the benefits to society?

4.3 SURA Coastal Ocean Observing and Prediction

SURA is a consortium of 62 universities whose mission is to ”nurture scientific
discovery and grow the scientific capacity of our region and the nation.” The
SCOOP Program [10, 11] is a SURA initiative in Coastal Research that involves
a diverse collaboration of coastal modelers and computer scientists working
with government agencies to create an open integrated network of distributed
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sensors, data and computer models. The SCOOP architecture will serve the
needs of the nation for a broad array of services oriented toward applications
and research involving coastal environmental prediction. The SCOOP program
implements the SURA mission to foster collaboration among its member in-
stitutions and to encourage new ideas for collaboration. Thus, by developing
this broad community-oriented cyberinfrastructure, the SCOOP program will
facilitate the implementation and coordination of projects such as CLEAR and
LPFS, and also provide a rich environment for research projects in computer sci-
ence such as DDDAS. The SCOOP program aims to go one step farther. When
aligned with the mission goals of operational agencies focussed on practical
applications, the SCOOP cyberinfrastructure should enable transformational
collaborations with the research community for use-inspired research that has
a fast track to provide tangible benefits for the nation.

SCOOP activities are driven by the need for improved forecasts and real-
time information for severe storm events, such as tropical storms and hurricanes.
The recent catastrophes in the southeast US following the triad of hurricanes
Katrina, Rita and Wilma have highlighted the pressing need for timely and
accurate forecasts as well as improved coordination and information transfer
between domain experts, policy makers and emergency responders.

SCOOP covers a wide range of activities with the central aim of provid-
ing a service-oriented cyberinfrastructure for the community, to be achieved
by modularizing critical components, providing standard interfaces and data
descriptions, and leveraging new Grid technologies. This cyberinfrastructure
will include components for data archiving, integration, translation and trans-
port, model coupling and workflow, event notification and resource brokering.
Rather than developing a single community model or toolkit, using framework
approaches such as the Earth System Modeling Framework (ESMF) [12] or the
Cactus Code [13, 14], SCOOP is building interfaces to allow existing models to
communicate with each other with coarse-grained connectivity.

The SCOOP community currently engages in distributed coastal mod-
eling across the southeastern US, including both the Atlantic and Gulf of
Mexico coasts. Various coastal hydrodynamic models are run on an opera-
tional (24/7/365) basis to study physical phenomena such as wave dynam-
ics, storm surge and current flow. The computational models, include1 Wave
Watch 3 (WW3), Wave Model (WAM), Simulating Waves Nearshore (SWAN),
ADvanced CIRCulation (ADCIRC) model, ElCIRC, and CH3D. Atmospheric
model results from models such as NAM, NOGAPS, COAMPS, and analytical
models provide the wind forcing which feed into the coastal hydrodynamical
models. Most SCOOP models are run on an operational basis at least once

1 Wave Watch 3 (WW3): http://polar.ncep.noaa.gov/waves/wavewatch/wavewatch.html,
Wave Model (WAM): https://www.fnmoc.navy.mil/PUBLIC/WAM/wam det.html,
Simulating Waves Nearshore (SWAN): http://www.wldelft.nl/soft/swan/,
ADvanced CIRCulation (ADCIRC) model: http://www.adcirc.org, EL-
CIRC: http://www.ccalmr.ogi.edu/CORIE/modeling/elcirc/, CH3D:
http://users.coastal.ufl.edu/ pete/CH3D/ch3d.html.
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Model Description Domains Mesh

ADCIRC: Advanced Cir-
culation Model

2D surge and current Entire SE

CH3D: Curvilinear grid
Hydrodynamics model in
3D

3D velocities, temperature,
salinity, surge

Western Florida

ElCIRC: Eulerian-
Lagrangian Circulation
Model

3D baroclinic circulation
across rivers to oceans

Chesapeake Bay

WW3: Wave Watch III Water depth & wave prop-
agation

Entire SE, parts of
Gulf of Mexico

WAM: Wave Model Water depth & wave prop-
agation

Gulf of Mexico

SWAN: Simulating Waves
Nearshore

Water depth & wave prop-
agation

Coastal Louisiana

Table 1. Primary coastal models used in the SCOOP project and the large scale and
regional domains on which they are deployed. These models use a variety of meshes
and numerical algorithms to simulate different physical properties.

a day and generate 72 hour forecasts. The models are currently run at spe-
cific sites with existing local expertise, although the project is implementing a
Grid-based infrastructure for future coordinated distributed deployment.

In addition to operational modeling, extreme events such as hurricanes or
tropical storms initiate additional automated model workflows. Advisories from
the National Hurricane Center (NHC) about impending tropical storms or hur-
ricanes are used to trigger automated workflows that start with the generation
of high resolution wind fields around the center of the energetic event. These
wind fields then initiate hydrodynamic models at different sites. The current
scenario involves the running of ADCIRC (at University of North Carolina),
CH3D (at University of Florida), and ELCIRC (at Virginia Institute of Marine
Sciences), WW3 (at Bedford Institute of Oceanography and Louisiana State
University). Figure 7 shows the different regions for which the SCOOP models
provide forecasts.

The resulting data fields obtained from both the operational and storm
event scenarios are distributed to the SCOOP partners for local visualization
and further analysis, and are also archived for further use in a high available
archive [15].
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Fig. 7. Illustration of the different geographical regions over which the SCOOP en-
semble of coastal models are currently deployed.

5 Components

Implementing the dynamic scenarios described in this paper will require techni-
cal advances across the areas of simulation codes, algorithms, computer systems
and measuring devices. In this section, we focus on technical issues related to
the various components that are needed for these scenarios. From these compo-
nents, one can build many DDDAS applications, such as those described here,
and others.

5.1 Varied Data Sources

Data from many sources needs to be integrated with the various models for
accurate simulations of the complex physical systems under study. For exam-
ple, wind fields are crucial for these applications, and can be provided both
from different observational sources and computer models. Each wind field will
have different uncertainties; improving the quality/resolution of input data, on
demand, can lower uncertainty in forecasts. Implementing these scenarios re-
quires the ability to dynamically create a customized ensemble of both analytic
and model wind fields, validated and improved with available sensor data, for
specified regions, complete with uncertainty functions that can be propagated
through models for sensitivity analysis.

Data from sensors, typically collected by regional observing systems such
as WAVCIS in Louisiana or GoMOOS across the Gulf of Maine, needs to be
quickly available for real-time verification and data assimilation.
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5.2 Data Management

Services for finding, transporting, and potentially translating data are needed
to enable current ensemble scenarios and then to scale to complex workflows
of coupled interacting models. To support emergency and real-time computing
scenrios, data sources need to be highly available, while data transport needs to
be fault tolerant with guaranteed quality of service. With new optical networks
in place, which can transport 10 Gigabits per second on a single “lambda”, we
need mechanisms for dynamically reserving and provisioning networks as part
of workflows, as well as data scheduling capabilities which ensure that data is
in the right place at the right time.

Metadata describing the huge amounts of data, distributed across multiple
sources, is also crucial. This should fully describe the data and its history,
including information about the models which created it, or the systems which
observed it, to provide complete provenance information which can be used to
verify and understand results.

5.3 Model-Model Coupling

In both scenarios, cascades of coupled models are used, at different levels; e.g.
circulation models, wave models, transport models, etc. Beyond simply defining
interfaces between these, one must develop techniques to track uncertainties
throughout entire cascades of models, create and optimize workflows on Grids
as storms approach or as dams are manipulated, and invoke models or model
components preferentially, based on algorithm performance and features for
conditions indicated by input data.

5.4 Ensembles

Cascades of models, coupled with multiple components at each stage of the
cascade, give rise to potentially hundreds of combinations. One may not know
a priori which combinations give the best results. Automated and configurable
ensemble modeling across grid resources, with continuous validation of results
against observations and model-model comparisons, will be critical to dynam-
ically refining predictions on the fly. It will also be necessary to develop algo-
rithms for dynamic configuration and creation of ensembles to provide predic-
tions with a specifiable, required accuracy. In designing these ensembles, the
system should also take into account the availability and “cost” of computa-
tional resources, noting that the available resources may also depend on the
seriousness and urgency of the situation being modeled. For the hurricane sce-
nario, the system should also react to the potential threat of the storm, for
example a Category 5 Hurricane could require a highly level of accuracy and
quality of services than a Category 3 Hurricane.
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5.5 Steering

The scenarios described above both involve automated steering (at both the
component and workflow levels) to adjust models to physical properties and
the system being modeled. In the hurricane scenario, one could steer sensor
inputs for improved accuracy. For the ecological scenario, it would allow one to
steer the “experiment”– the active river diversions–which can be controlled by
the models to improve water quality, reduce salinity, control algal blooms, etc.
The remote steering of model codes, for example to change output parameters
to provide verification data, or to initiating the reading of new improved data,
will require advances to the model software. Beyond introducing the technical
capabilities for steering parameters (which often requires the involvement of
domain experts), the mechanism for steering should require authentication for
security, and changes need to be properly logged to ensure reproducibility.

5.6 Visualization and Notification

Visualization will be used for different purposes. Detailed visualizations, inte-
grating multiple data and simulation sources showing the predicted effect of a
storm (see Figure 8) will be important both for scientific understanding and
analysis and for public awareness. For example, the visualization in Figure 8,
which is scientifically accurate, would be very effective in impressing on the
public the urgency of evacuation on the general population. Interactive and col-
laborative 3-D visualization for scientific insight will stress high speed networks,
real-time algorithms and advanced clients. Visualizations including verification
analysis and real-time sensor information will be crucially important.

Notification mechanisms which can automatically inform scientist, system
administrators and emergency responders need to be robust and configurable
sending the relevant information for a particular device e.g. cell phone, instant
message client, email. The automated systems we envisage will require human
intervention and confirmation at different points, and here it is important that
the system include mechanisms which require authenticated response and have
intelligent fallback mechanisms.

5.7 Priority and Deadline Based Scheduling:

Events such as hurricanes cannot be planned, and must be responded to at
a time of their choosing. This type of scenario, and the need to run multiple
models, concurrently with data streams and analysis tools, leads to new types
of requirements on scheduling and reservation systems: priority, deadline-based,
and co-scheduling. Not only must computational resources be made available on
demand, with a specific deadline and guarantee for results, multiple resources
must be scheduled simultaneously and/or in sequence. Furthermore, these re-
sources go beyond traditional computing resources, and now need to include
archival data, file systems, networks, visualization systems, and so on.
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Fig. 8. Combined visualization of Hurricane Katrina approaching New Orleans, show-
ing the water surge as predicted by the ADCIRC simulation model, cloud density as
observed in infrared by the GOES-12 satellite, terrain height information obtained
from high-resolution LIDAR measurements (green: above sea level, magenta: below
sea level, blue: sea level) with the levee information of the ADCIRC model, overlaid
on aereal photography and GIS terrain information. [Image credits: CCT Scientific Vi-
sualization group, Amanda Long, Werner Benger, Ana Buleu, Shalini Venkataraman,
Steve Beck].

6 Conclusion

We have described some of the new technology components and capabilities
which will be needed to enable the DDDAS scenarios outlined in Section 3.
However, it is important to recognize that along with these advances, several
concurrent developments are needed for these applications to be developed by
communities, and actually run on computational environments. For example,
the relevant scientific communities need to embrace a model of sharing data,
code components, as well as computational resources. As this sociological change
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Fig. 9. The LPFS system has been augmented by a threat level system. The threat
level can be changed by trusted applications or scientists, and is then used to both
notify system administrators, customers and scientists of changing circumstances and
to set policies on compute resources for running on demand jobs. This diagram shows
a portal interface to the threat level system.

occurs, the communities will also need to adopt more modern software engineer-
ing practices and cyberinfrastructure in order ultimately to take advantage of
the kinds of components we are developing. At the same time, it will be crucial
for component and scientific library developers to adopt practices and interfaces
that allow them to be used in this portable, dynamic environment. Finally, and
just as importantly, it will be critical for policies to be adopted at computing
centers that enable this kind of event-driven computing and data streaming, so
that the real-time scenarios we describe can actually be carried out in practice;
computational resources of various kinds will have to be available on demand,
with policies that take into account the priority of certain jobs, such as hurricane
storm surge computations.
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Modeling and simulation using high-performance computing are playing an in-
creasingly important role in decision making and prediction. For time-critical
emergency decision support applications, such as influenza modeling and se-
vere weather prediction, late results may be useless. A specialized infrastruc-
ture is needed to provide computational resources quickly. This paper describes
the architecture and implementation of SPRUCE, a system for supporting ur-
gent computing on both traditional supercomputers and distributed comput-
ing Grids. Currently deployed on the TeraGrid, SPRUCE provides users with
“right-of-way tokens” that can be activated from a Web-based portal or Web
service invocation in the event of an urgent computing need. Tokens are trans-
ferrable and can be restricted to specific resource sets and priority levels. Once
a session is activated, job submissions may request elevated priority. Based on
local policy, computing resources can respond, for example, by preempting ac-
tive jobs or raising the job’s priority in the queue. This paper also explores
the strengths and weaknesses of the SPRUCE architecture and token-based
activation for urgent computing applications.

1 Introduction

Scientific computing is playing an ever-increasing role in making critical deci-
sions. For example, global climate modeling played a key role in influencing
the Kyoto Protocol for the reduction of greenhouse gas emissions [1]. Likewise,
computer models have helped large metropolitan areas plan for new highways
and congestion relief [2]. While decision makers would like simulation results
as soon as possible, there is often little urgency or a deadline to complete the
computation. Developing public policy is rarely fast. There are, however, grow-
ing sets of problem domains where key decisions must be made quickly with
the aid of large-scale computation. In these domains, “urgent computing” is
essential, and late results are useless. A computer model capable of determin-
ing where tornadoes will form must provide early warning to local residents.
A computation to predict the flow of airborne contaminants from a ruptured



railcar must guide evacuation while there is still time. These on-demand large-
scale computations cannot wait in a job queue for Grid resources to become
available. However, neither can the scientific community afford to keep multi-
million dollar infrastructures idle until required by an emergency. Instead, we
must develop technologies that can support urgent computation. Scientists need
mechanisms to find, evaluate, select, and launch elevated-priority applications
on high-performance computing (HPC) resources. Those computations might
re-order, preempt, or terminate existing jobs to provide the needed cycles in
time. SPRUCE, the Special PRiority and U rgent Computing Environment, is
a system for providing resources quickly and efficiently to high-priority appli-
cations that must get computational power without delay. This paper makes
two contributions: it presents and analyzes an architecture for supporting ur-
gent computing across large production Grids, and it provides implementation
experiences from the TeraGrid [3] deployment.

1.1 Requirements for Supporting Urgent Computing

Urgent computing can be supported in many ways. Priority queues, admin-
istrative intervention, and emergency stand-by resources could all be used to
provide compute cycles quickly. While these methods may be effective for some
usage scenarios, however, they cannot provide a feature-rich architecture capa-
ble of supporting large, distributed Grids. A Grid-based architecture for urgent
computing must meet the following design requirements:

– Urgent computing jobs must occur within a clearly defined “session.” Sys-
tem administrators are notified when sessions begin, permitting periods of
increased attentiveness and, if needed, human intervention to provide the
resources required.

– The system must support possibly different urgent computing policy frame-
works among Grid resource providers and coexist with ongoing operations.
For example, some HPC centers may support preemption for certain appli-
cations or priorities, while other HPC centers may provide only “run-next”
priority following the normal completion of existing jobs.

– Permission to initiate an urgent computing session must be easily trans-
ferrable so team leaders, managers, and senior personnel can respond quickly
to emergency situations.

– Application team leaders must be able to quickly assemble and authorize sets
of users to submit priority jobs across a Grid that spans multiple sites and
administration domains.

1.2 SPRUCE Architecture

Our architecture for urgent computing uses a token-based system to address
these requirements. Tokens can have various levels of priority and different
sets of resources applicable to them. Initiating an urgent computing session
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begins with the initialization, or “activation,” of a token via a Web portal or
command line. Tokens are simple authorization codes and therefore completely
transferrable either electronically or on a printed card. This design is based
on existing emergency response systems proven in the field, such as the pri-
ority telephone access system supported by the U.S. Government Emergency
Telecommunications Service within the Department of Homeland Security [4].
Users of the priority telephone access system, such as key managers at hospi-
tals, fire departments, government offices, and 911 centers, carry a wallet-sized
card with an authorization number. Cardholders can use the code to place
high-priority phone calls that jump to the top of the queue for both land- and
cell-based traffic. Even if circuits are completely jammed because of a disaster,
important traffic can get the priority needed. Since tokens are transferrable,
users benefit from tremendous flexibility during critical-response situations.

To support token-based access to elevated-priority resources, the SPRUCE
architecture has three main components: user workflow and client-side job sub-
mission tools, a Web service-based user interface to manage tokens, and local
resource provider agents that can respond to the request for priority access. The
remainder of this paper presents the design and implementation of each of these
components, an analysis of the architecture, and our experiences deploying the
system on the TeraGrid.

2 SPRUCE User Workflow

The SPRUCE workflow is designed for the application teams that can provide
computer-aided decision support. Each application team is organized by its
principal investigator (PI). The PI selects the computational “first responders,”
senior staff who can evaluate the request, initiate a SPRUCE session, and engage
the other team members. The first responders hold the right-of-way tokens
and decide when they should be used based on the best available information
and the policies of the Grid system. The PI also selects an “interpreter” to
translate the raw data and simulation output into advice for decision makers.
For example, imagine an application that models airflow across a city and can
be used to evaluate contamination scenarios. The results of that simulation
may have many subtle details that need interpretation and presentation to city
managers as they formulate response scenarios.

Figure 1 illustrates how the SPRUCE workflow is initiated. A trigger causes
the computational first responders to spring into action. The trigger may be
automatic, such as an automated warning message from a tsunami alarm buoy,
or human generated, for example by a phone call to the PI. For many applica-
tions, the computing request may include a deadline. If the results cannot be
provided before the deadline, the window for effective decision-support will have
passed. The scientists must choose an appropriate priority level for the situa-
tion based on the importance of the job to be submitted. SPRUCE right-of-way
token holders must adhere to the policies concerning activation and must use
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Fig. 1. SPRUCE workflow and token activation

discretion, in the same way that citizens are expected to use good judgment
before dialing 911. Users must be aware that misuse can result in the revocation
of their tokens.

Interaction with the SPRUCE system starts by activating a right-of-way
token. A Web-based portal built on Web services is provided, where the token
manipulations can be performed. Additionally, the Web service functionality
may be incorporated into automated work-flows, thereby avoiding human inter-
vention in managing tokens. Activation is described in greater detail in Section
3. Often, running a large simulation involves numerous scientists who are re-
sponsible for tasks ranging from acquiring the most recent data set to producing
a visualization for analysis. The initiator of the SPRUCE session can indicate
which scientist or set of scientists will be able to request elevated priority while
submitting urgent jobs.

2.1 Choosing Resources

When a scientist wants to choose a resource to run on, two factors must be con-
sidered. The application needs to be fine tuned to suit the resource environment,
and the policy pertaining to priority access should be functioning correctly.

With the token activated and the application team specified, scientists can
organize their computation and submit jobs. Naturally, there is no time to port
the application to new platforms or architectures or to try a new compiler.
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Fig. 2. The SPRUCE advisor helps choose the best resource

Applications must be prepared for immediate use—they must be in “warm
standby.” All of the application development, testing, and tuning must be com-
plete before freezing the code and marking it ready for urgent computation.
Grids such as the TeraGrid have dozens of large-scale computational resources.
The SPRUCE architecture supports large, diverse Grids; but ultimately the
science teams must select the best resources for their application. Maintaining
and validating the accuracy of a simulation require programmer resources, and
often application teams narrow their efforts to a handful of favorite platforms
and sites. Additionally, these sites should have their priority policy in place
and all the hooks needed to implement it immediately when needed. In the
same way that emergency equipment, personnel, and procedures are periodi-
cally tested for preparedness and flawless operation, SPRUCE proposes to have
applications and policies in warm standby mode, being periodically tested and
their date of last validation recorded.

From this pool of Grid resources where the validated application awaits in
warm standby, the team must select where to submit their jobs. This process can
be challenging. In a distributed Grid linking resources provided by independent
resource providers, different urgent computing policies will exist. One site may
provide only a slightly increased priority to SPRUCE jobs, while another site
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may kill running jobs and hand the entire supercomputer to extremely urgent
computations. On resources where existing jobs are not killed or preempted, cur-
rent job load will affect resource selection. Data movement may also constrain
resource selection. To support finding and choosing resources, SPRUCE users
may select resources manually or may use an automated SPRUCE “advisor”
(see Figure 2).

The proposed SPRUCE advisor needs four pieces of data to recommend
where jobs should be submitted: the deadline for results, the estimated running
time of the job, each site’s urgent computing policy expressed as a schedul-
ing algorithm for SPRUCE jobs, and the current status of job queues at the
resource sites, which can be provided via MDS4 [5] on the TeraGrid. By combin-
ing these parameters with the application validation histories for each resource,
several resources can be recommended or even automatically selected. If man-
ual selection of the resource is preferred, the user may analyze the job queue
status reports from MDS4 and examine previous warm standby results from
the SPRUCE database to make a decision. Once the resource is selected, the
user submits the job with a designated urgency.

2.2 Prioritized Job Submission

SPRUCE provides support for both Globus-based urgent submissions and di-
rect submission to local job-queuing systems. Currently all the major resource
managers such as Torque, LoadLeveler, and LSF and schedulers such as Moab,
Maui, PBS Pro, and Catalina are supported. The system can be extended to
any scheduler with little effort. Authorized users who have active tokens need
only to specify an additional “urgency” parameter when submitting their jobs.

The Globus Toolkit [6] for Grid computing provides the TeraGrid with uni-
form tools for authentication, job submission, file transfer, and resource de-
scription. Users can submit remote jobs to any of the TeraGrid platforms. By
extending the Resource Specification Language (RSL) [7], which is used by
Globus to identify user-specific resource requests, we give the user the ability
to indicate a level of urgency for jobs. A new “urgency” parameter is defined
for three levels: critical (red), high (orange), and important (yellow). Urgency
levels are used in two places. Gridwide policies and guidelines can help scientists
organize and differentiate potentially competing jobs by urgency. On the back
end, the resource provider can enable site-local response protocols according to
urgency.

The urgency can be specified within a Globus submission job script. Figure
3 shows an example. The site-local job manager agents check for validity of the
request based on the token attributes applicable to that particular user and
respond accordingly.

Unlike the Globus RSL, local job queue submission interfaces, such as the
PBS command qsub [8], are often not trivially extended to accept new param-
eters. To specify the urgency level when submitting directly to a computer’s
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test.rsl

+

(&

(resourceManagerContact =

site-contact.teragrid.org/jobmanager-spruce)

(rsl substitution =

(HOMEDIR "/soft/spruce/examples"))

(executable = $(HOMEDIR)/mpihello)

(jobType = mpi)

(host types = ia64-compute)

(host xcount = 4)

(urgency = red)

(stdout = $(HOMEDIR)/globus stdout)

(stderr = $(HOMEDIR)/globus stderr)

)

> globusrun -o f globus test.rsl

Jobnumber.resource.teragrid.org

Fig. 3. globusrun usage with additional job submission parameters

local job queue usually requires a modified job submission command or a wrap-
per script. SPRUCE provides a spruce sub script that accepts the additional
command line parameter, which can be yellow, orange, or red depending on the
required priority.

From the user’s perspective, with the job submitted, the final step to the
workflow is waiting for the job to be run and the data analyzed. If the resource
does not launch the job as expected or if there are run-time errors, the job can
be killed or dequeued by using the normally supported tools for the system.
Behind the scenes, during the submission process the job is also checked against
activated right-of-way tokens. Jobs for users without valid session tokens or
unauthorized urgency levels will not be queued. They are rejected immediately.
The authorization mechanism is described in the next section.

3 SPRUCE Portal

The SPRUCE portal provides a single-point of administration and authorization
for urgent computing across an entire Grid. It consists of three parts:

– The Web-based administrative interface lets privileged users use a standard
Web browser to create, issue, monitor, and deactivate right-of-way tokens. It
also allows SPRUCE administrators to manage the portal, including adding
other administrators, registering new resources, and changing notification
email addresses.

– The Web service-based user interface permits token holders to activate an
urgent computing session and manage user permissions. Additional features
include monitoring session and user information.
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– The authentication service verifies jobs. Local site job manager agents ask
the remote SPRUCE portal to validate urgent computing jobs. Provided that
the user is associated with an active urgent computing session for the local
resource and the requested level is within bounds, the portal approves the
request.

3.1 Right-of-Way Tokens

Many possible implementations exist for authorizing an emergency computa-
tion, ranging from digital certificates, signed files, and proxy authentication
servers to shared-secret passwords. In emergency situations, however, simpler
is better. Relying on complex digital authentication and authorization schemes
could easily become a stumbling block to timely response. Instead, SPRUCE
uses simple, transferrable right-of-way tokens (see Figure 4). Tokens are unique
16-character strings that are issued to scientists who have permission to re-
quest urgent priority. When a token is created, several important attributes are
set: the resource list of included machines, maximum allowable priority, lifetime
(period for which elevated priority jobs may be submitted), and expiration date
of the token.

Sites can enforce their own policies for each of the allowed priorities. The
intent is to have jobs with higher priority displace lower-priority jobs if resources
are limited during instances of simultaneous requests. By carefully selecting the
attributes of tokens when they are created, local site administrators can make
decisions regarding the relative importance of projects and the resources they
may use for urgent computation. SPRUCE can support distributed computation
in the form of “cross-site” tokens for which resources at multiple sites, or even
all resources in the Grid, can be utilized. After a token’s lifetime has run out,
another token must be activated if additional priority computation is required.

Fig. 4. SPRUCE “right-of-way” token

We emphasize that the right-of-way token is not related to machine access
or authentication. Users must already have an account and be able to log on
and authenticate in the traditional manner. The token allows the user only
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to request elevated priority for job submission. Without the token, requests
for elevated job priority are simply logged and then ignored. Moreover, after
activating the token, only jobs submitted with special, elevated-priority job
parameters, described in Section 2.2, will receive unique treatment.

3.2 Administration Interface

Distributed Grids have multiple administration domains. Some Gridwide poli-
cies and procedures can be set for all participating resource providers. For the
TeraGrid, the Grid Infrastructure Group (GIG) coordinates the software in-
frastructure, allocation and usage reporting, user support, and Grid security.
While each resource provider, such as the San Diego Supercomputer Center,
the University of Chicago, or the Texas Advanced Computing Center, has a
loosely defined “service level agreement” for participation in the TeraGrid, they
are nevertheless independent organizations. To support multiple administration
domains and virtual organizations across multiple overlapping Grid systems,
SPRUCE maintains a hierarchical Web-based administration interface, which
is organized into three levels, each granted powers within its respective domain.
Ordered by increasing privileges, these are the site (Grid resource provider),
virtual organization, and root administrative domains. Figure 5 illustrates the
hierarchical nature of the admin interface.

Fig. 5. SPRUCE portal hierarchy of functionality

To permit possibly differing resource and management policies at each site,
SPRUCE supports multiple sites under a virtual organization. A token created
by a site administrator may be used only for resources present at that site. This
strategy enables the site administrator to use SPRUCE in the wider context
of a large multisite Grid as well as privately, for local machines and users. The
administrator may create and distribute tokens that are limited in scope to the
computers the site operates. For example, a local earthquake-modeling team
working with an HPC center can be presented tokens that are valid only on the
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specific supercomputer designated for that research. The local administrator is
also responsible for managing the identities of local users as well as the list of
machine hosts supporting SPRUCE.

The next level of administration is for the virtual organization spanning
several sites, such as the TeraGrid. The administrator for the TeraGrid GIG
may issue tokens for resources at multiple sites, in accordance with the policies
and service level agreement and management structure of the Grid system.
Activating a cross-site token provides users a large collection of machines spread
across multiple sites for their jobs. At this level the administrator for the virtual
organization can also add new sites.

Administrators also have access to the logging and status information main-
tained by the portal. Included among this data are the token activation statistics
and monitoring of failed attempts to use elevated privilege.

3.3 User Interface

The users of the SPRUCE user interface are the scientists responsible for orga-
nizing the application team. Their tasks include monitoring the status of tokens,
activating sessions, and organizing the team that may participate in an urgent
computing session. The interface for this user community must be simple, fast,
and modeled after the workflow described earlier in Section 2. The user services
are specifically designed as Web services in order to enable incorporation into
existing scientific Web portals and work flows. Users who prefer to use a Web-
based interface, can do so at the SPRUCE user portal, which is built on top of
these services.

The first step for a computational first responder is to activate a token by
entering its 16-digit code via a Web service call either from a local workflow or
from the SPRUCE portal. At that instant, the urgent computing session begins.
We expect typical token lifetimes to range from 4 to 24 hours, during which the
submission of priority jobs to the resources is permitted.

With the token activated and the session begun, the next step in the work-
flow is user management. For convenience during an emergency, the users who
will be running the jobs can be “preloaded” onto a token, if known prior. If not,
the participants of the session can be added after token activation. Changes to
the user associations of a token are propagated without delay. After a partici-
pant is associated with an active token, urgent computing jobs will authenticate
correctly. Token holders can also remove participants as needed. All SPRUCE
users may monitor basic statistics such as the remaining lifetime of the token.

Since SPRUCE supports urgent computing for Grid users as well as tradi-
tional supercomputing users, the portal maintains two methods for specifying
the participants in an active session. For those users with Grid credentials,
the Distinguished Name (DN) for the user is appropriate. Sites without Grid
support can use the Unix username of the participant for the resource.
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3.4 Job Authentication

At the core of the SPRUCE architecture is the notion that only while a right-
of-way token is active may urgent jobs be submitted. In order to support this
notion across a distributed Grid system, a remote authentication step must be
inserted into the job submission toolchain for each resource supporting urgent
computation. Since the SPRUCE portal contains the updated information re-
garding active sessions and users permitted to submit urgent jobs, it is also the
natural point for authentication.

When an urgent computing job is submitted via Globus or the local queue
system, the urgent priority parameters triggers authentication. Remember, this
authentication is not for the user, which has already been handled by the tradi-
tional Grid certificate or by logging into the Unix-based resource, but is really
a “Mother, may I” request for permission to enqueue a high-priority job. That
request is sent via the network to the SPRUCE portal, where it is checked
against active tokens, resource names, maximum priority, and associated users.
If a right-of-way token has already been activated and the other parameters for
the job request are within the constraints of the token, permission is granted.
All transactions, successful and unsuccessful, are logged.

4 Resource Providers

To support urgent computing for supercomputers via the SPRUCE system,
the resource provider must take three actions: register with the SPRUCE por-
tal, formulate a resource specific policy for responding to urgent computing
requests, and install SPRUCE components that interface with the job manager
and queuing system.

4.1 Portal Registration

Sites participating in SPRUCE need an administrative account on the SPRUCE
portal. From that account, administrators can provide the details for each of the
computational resources that will support urgent jobs. The site administrator
will also provide important contact information that can be used for emergency
notification, for example when tokens are activated or critical errors occur.
Once that preliminary information has been set up, the administrator may
begin generating and issuing right-of-way tokens. If the site is a member of a
larger distributed Grid system that is already a part of SPRUCE, it may be
merged with the corresponding virtual organization.

4.2 Responding to Urgent Computation

The SPRUCE architecture does not define or assume any particular policy
for how sites must respond to urgent computing requests. This approach com-
plicates the architecture and usage scenarios, but it is unavoidable given the
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current state of systems software for supercomputers. When small-memory vec-
tor computers were the standard for HPC computing, preempting jobs was
natively supported. Long-running jobs were routinely suspended, not to sup-
port urgent decision calculations, but simply to permit shorter jobs to achieve
fast turnaround times during compile or debug sessions. Unfortunately, almost
all modern supercomputers have lost this once key feature, and therefore the
SPRUCE architecture cannot simply standardize the strategy for responding to
urgent computation as immediate preemption. Instead, we are left with many
possible choices for supporting urgent computation depending on the systems
software and middleware as well as on constraints based on accounting for CPU
cycles, machine usability, and user acceptance. Given the current technology for
Linux clusters and more tightly integrated systems such as the Cray XT3 and
the IBM Blue Gene, the following responses to an urgent computing request
are some of the possibilities:

– Scheduling the urgent job as “next to run” in a priority queue. This approach
is simple and is highly recommended as a possible response for all resource
providers. All modern queuing and job management systems support priority
queues that will used for selecting the next job to run. No existing compu-
tation is killed; and from the perspective of the user community, the impact
on normal use is low. The urgent job will begin when all of the existing jobs
complete for a given set of CPUs.

– Suspending existing jobs and immediately launching the urgent job. Some sys-
tems allow jobs to be suspended but remain resident in memory (sig STOP).
Running the urgent job will then force some memory paging, but the sus-
pended job could be restarted later. Some applications that use external data
sources and network connections may fail (connections time out and reset) if
they are suspended. If a node crashes, the suspended and the urgent job will
be lost. The urgent compuitation will begin almost immediately, making this
option very attractive in some cases.

– Forcing a checkpoint/restart of running jobs and enqueueing the urgent job
as the next to run. This response is similar to the previous response. Some
architectures support system-based checkpoint/restart. Where it is reliable,
it could be used to support urgent jobs. Jobs will begin when the check-
point completes. For large-memory systems, it could be 30 minutes or more
depending on I/O and disk rates.

– Killing all running jobs and enqueuing the urgent job as next to run. Clearly
this response is drastic and frustrating to users, who will lose their com-
putation. Nevertheless, for extremely urgent computation, what user would
demand a black-hole simulation complete before launching an emergency hur-
ricane flood modeling scenario? Urgent jobs could begin immediately after
existing jobs are killed.

Another factor in choosing the policy for response is accounting and stake-
holder accountability. Certain machines are funded for specific activities, and
only small amounts of discretionary time are permitted. In some cases, there
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may be no specific “charge code” for urgent computing cycles. Furthermore, in
order to improve fairness, some form of compensation could be provided to jobs
that are killed to make room for an urgent one. For example, users could be
refunded their CPU hours, given extra time for their trouble, and rescheduled
with higher priority. They could then get back on the machine quickly after the
urgent job completes, rather than being relegated to the back of the job queue.

Another idea is to provide discounted CPU cycles for jobs that are will-
ing to be terminated to make room for urgent computation. Some users have
extremely robust and well-integrated problem solving environments that can
perform checkpoint/restart easily. Some users design their software so only one
or two hours of work are lost should a CPU fail or the entire system go down.
Such users should be rewarded. A discounted rate would allow them to regain
their lost work and run more inexpensively.

The calculation of “maximum time to begin” may play an important role
in choosing a response strategy. For machines that support checkpoint/restart
or simply killing existing jobs, the maximum time to begin can be bounded,
possibly on the order of a few minutes to tens of minutes. If it is easy to calculate
or determine, it can be used in conjunction with the computation deadline for
selecting resources. Unfortunately, jobs with next-to-run priority could wait
hours or days before existing jobs complete. In any case, resource providers are
encouraged to map all three levels of urgency—critical, high, and important—to
clearly defined responses.

Once the resource provider has decided on a policy and has installed
SPRUCE, token holders can activate tokens and associate users, who will then
submit urgent priority jobs in one of two ways. Jobs can request priority access
by specifying urgency parameters either in Globus job submissions or by using
a stand-alone command line spruce sub as described in Section 2.2. These re-

quests are processed by the SPRUCE Job Manager component, which verifies
the job request and implements the local policy.

Figure 6 gives an overview of how the job requests are handled at the re-
source provider.

4.3 Handling Urgent Job Submissions

In the Globus architecture, incoming jobs are routed to a job manager. A job
manager tailored to support SPRUCE handles the additional job parameters.
When an urgent SPRUCE job is submitted, a job script is dynamically assem-
bled and passed to the native resource manager such as PBS Pro or Torque. It
then authenticates the request against the portal (see Section 3.4). This filter
makes sure that all job scripts were prepared by the job manager rather than a
user attempting to sneak a job into the high-priority queue without SPRUCE
validation. In the case of the Torque scheduler, a submit-filter [9] script specific
to SPRUCE is run every time a job is submitted. If the user does not have suf-
ficient permission, the request is rejected. If the request passes the verification
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Fig. 6. Resource provider architecture

stage, the actions needed to grant urgent access are performed based on the lo-
cal site policy and the requested priority level. After verification, the native job
scheduler sends the job ID back to Globus, and when the requested resources
become available, the queued job is launched.

Local sites can also support the command line version of the urgency job
submission mechanism in the form of spruce sub. Submission requests of this
type are also routed through the SPRUCE job manager; hence the implemen-
tation mechanism remains the same. The only difference between these two
submission methods is in the interface.

5 Experiences and Analysis

Currently, SPRUCE is deployed on University of Chicago/Argonne National
Laboratory (UC/ANL), Purdue University, Texas Advanced Computing Cen-
ter (TACC), San Diego Supercomputing Center (SDSC), National Center for
Supercomputing Applications (NCSA) TeraGrid resource providers and is in
the process of being deployed at Indiana University. Louisiana State University
is one of our early non-TeraGrid adopters to use the system for the coastal
modeling project SCOOP [10]. We are working with the LEAD Project [11] as
they gear up to run severe weather simulations in response to real-time weather
data. Tokens are distributed to key members who will act as test users of the
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system. Efforts are ongoing to configure the applications for periodic warm-
standby tests.

The existing implementation of the system encapsulates all the basic frame-
work necessary to allow urgent job submissions. Team first responders can
activate and associate user identities with tokens. Team members can then
submit jobs with next-to-run priority. The hierarchical administrative domains
described in Section 3.2 allow site administrators to manage local tokens.

At the moment, Globus submissions are restricted to the use of the globusrun
command, and the direct submissions tool spruce sub does not handle command
line PBS options. All three priority levels map to the next-to-run policy imple-
mented as a priority queue. There are customized distributions to work with
most of the popular resource managers and schedulers, as mentioned in Section
2.2. All of them are compatible with pre-Web services versions of the Globus
Toolkit. Work is under way to extend the flexibility of the submission tools,
enable multisite submissions, and provide extended policy support.

The SPRUCE architecture is designed to work independently or as a part of
the Globus installation. The biggest strength of the design is its flexibility: the
ability to adapt to any environment it might be interfaced with. The user func-
tionality is implemented completely as Web services using Apache AXIS 2 [12].
External portals and workflows can simply use the Web service interfaces from
within their applications. The portal is implemented in PHP and MySQL, uses
the underlying Web services, and runs on the Apache Web server. Using a sim-
ple Web browser, SPRUCE users can interact with the system. Only minimal
additional training is needed, making SPRUCE appropriate for emergency sit-
uations. Likewise, administrators will find the interface easy to navigate and
use regardless of their environment.

One drawback of the current design of the architecture is that there exists
a single point of failure in the form of the portal. If the SPRUCE portal goes
down or the user cannot access it, there is no way other way to route the urgent
jobs. In order to counteract this weakness, the portal will require redundancy
and remote fail-over locations. The existing version of the portal is also subject
to the same variety of attacks as other Internet Web servers, including denial of
service, spoofing, and abuse of software vulnerabilities. These and other exploits
are current research topics and have received considerable attention; we hope
to take advantage of these efforts in our future work.

Another challenge is to allow local sites to establish their own policies while
keeping SPRUCE installation as simple as possible. Each site needs a cus-
tomized version of the job manager depending on site policy and scheduler,
which cannot be bundled into a common distribution. Hence, site administra-
tors must make minor modifications to the distributed SPRUCE job manager
to work with their systems.
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6 Future Work

Two of the most attractive and challenging components of the architecture re-
main to be implemented: the advisor and automated warm-standby testing.
SPRUCE jobs are emergency codes that require active maintenance and have
certain dependencies that must be taken into account by the SPRUCE advisor
before suggesting possible scheduling scenarios to the user. Job-specific infor-
mation such as running time, data dependencies, and other possible computer-
specific characterizations must be collected periodically to ensure that the most
recent information is used by the advisor. Warm standby will automate what
many users currently do by hand and will ensure the reliability of the monitored
emergency codes. It will also help us validate the policy enforcement from time
to time. Work is in progress to implement both features by using the INCA
monitoring system [13] and MDS4 of the Globus Toolkit. Warm-standby appli-
cations require substantial programmer effort, CPU time dedicated to periodic
test runs, and fast data transfer. Since the user applications can best be tested
for their readiness in the actual environment of the person who will be submit-
ting the job, INCA needs to be customized to submit jobs as the user or collect
the data on behalf of the user.

We also plan to incorporate more flexibility to job submissions. Token hold-
ers should be able to aggregate tokens and submit jobs from the portal directly.
Such flexibility will make SPRUCE a one-stop place to get priority access, select
a resource, and submit urgent jobs.

The presented SPRUCE architecture doesn’t deal with data movement,
which is crucial for most high-performance computations. The advisor will need
to take into account transfer delays associated with data movement before ad-
vising on the best set of resources. Warm-standby jobs will also have data
dependencies that must be resolved automatically. Existing data movement
strategies and tools such as the GridFTP project [14] will facilitate SPRUCE.
Token-based network authorization would also be a good fit for network provi-
sioning [15].

7 Conclusions

In this paper we have presented the architecture of SPRUCE, a token-based
service for providing urgent access to high-performance computing resources
modeled after the U.S high-priority telephone system in wide deployment to-
day. The use of tokens allows urgent access to be physically transferrable, and
the tokens have restricted access that is encoded prior to their issue. Tokens
have expiration dates and lifetimes and may be redeemed only on resources that
have been previously encoded into the token. A Web service-based user interface
lets scientists manage their tokens easily and efficiently. Moreover, tokens are
thoroughly tracked, and all user actions may be monitored by a three-tier hierar-
chy of administrative domains allowing site, virtual organization, and SPRUCE
administrators to enforce policies relevant to their administrative domain.
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We have also shown our initial results and an analysis of the architecture
for our first TeraGrid customers at the University of Chicago, TACC, SDSC,
Purdue University, and NCSA. Currently, we are working on integrating into
LEAD portal so scientists can use SPRUCE within their infrastructure. We
anticipate significant new developments as more TeraGrid sites and user com-
munities bring SPRUCE support online, including an advanced warm-standby
system for periodic testing of emergency codes and policies, a resource selection
advisor, and extensions to provide an urgent data movement capability.
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Q&A – Suman Nadella 

Comment: Craig Douglas 
This is highly dangerous from an abuse and political viewpoint. The right 
approach is to get a fundamental piece of operating systems 
(checkpoint/restart) implemented universally. 

Suman Nadella 
Clearly, having system-based checkpoint/restart (CPR) will greatly help the 
implementation of SPRUCE. For years, CPR was available on many 
systems, and it permitted very flexible scheduling. However, with the 
community's move toward clusters with advanced compute node features, 
system-based CPR is a long way off. There are many Grid applications 
where compute nodes run TCP/IP services, making automatic system-level 
check pointing without application code cooperation impossible. While we 
certainly would benefit from a good CPR system, it is nevertheless important 
that the framework for supporting Urgent Computing proceed as rapidly as 
possible, using whatever capabilities exist on each machine. We do not 
believe, in general, that Urgent Computing poses a significant abuse risk. 
Scientists who use national supercomputing resources understand how their 
behavior affects their funding, reputation, and career. Given clear guidelines, 
we do not believe Urgent Computing will be misused, and should it be 
misused, the remedy is fast, simple, and effective -- revoke all tokens and kill 
the Urgent Computing job. 

Comment: Gabrielle Allen 
I think there are ways to set policies that can be used with on-demand 
computing, for example, charging less for use of preempt queues. 

Suman Nadella 
Yes, we believe that with a bit more planning, it may be possible to use a 
system of rewards and discounts to encourage good behavior and flexible 
scheduling. 

Questioner: Sebastian Goasguen 
Why not use standard ACL on a high priority queue? 

Suman Nadella 
SPRUCE can use whatever means are available to restrict usage on the high 
priority queue. Some systems provide ACLs. On such machines, SPRUCE 
can certainly use ACLs to further restrict submissions to only select users. 
However, we feel it is important to use a token-based system because of the 
inherent flexibility for Grid and multiple-resource computing as well as the 
very clear act of "activating a token". Activating a token is meant to signal an 



Urgent Condition and alert people even before any ACL or queue is touched. 
After that happens, ACLs can indeed limit access. 

Questioner: Sebastian Goasguen 
Why not use the attribute authorization systems like gridshib to 'push' tokens 
to the resource, i.e., how different is SPRUCE from attribute authorization 
based system? 

Suman Nadella 
SPRUCE only uses the tokens to elevate priority, not authorize logins, 
accounts, or shells. We have specifically stayed clear of all authorization and 
authentication since each site manages those issues quite differently, and 
with different tools. Instead, SPRUCE assumes that accounts and the ability 
to submit jobs are already in place, and the only thing SPRUCE can do is 
request elevated priority after a token has been activated. 

Comment: Brian Ford 
This gives us an opportunity to take a responsible position as members of 
society, to show as scientists we understand the order of issues and have a 
sense of responsibility and order. It can help us to reposition the evaluation 
of scientists in the mind of the community. We are not just white coats, 
bringing doom and gloom from our science. We are responsible individuals 
who understand the prior need of community for urgent address of immediate 
emergencies. 

Suman Nadella 
Yes, thank you for the comment. We too believe that the science community 
should step forward and offer assistance in several areas where ongoing 
research can help, such as wildfire and storm prediction. If we begin to work 
out some of the mechanisms and ideas now, over the next 5 years we will be 
able to slowly move some of the science apps that could benefit society into 
a position to actually help. 

Comment: Brian Ford 
Second point - It is good to think and talk about these issues. We have to 
start at the beginning and think through the issues. This is what this talk and 
our reactions are about. Perhaps Nobel Prize winners need to recognize (if 
they don't already) that there are activities - particularly at specific moments 
and in special circumstances - that are more important than their individual 
research (valuable as that may be). There is an order in which computing 
resources should be used in an emergency. We need to consider and seek 
to derive that order. Pat Gaffney has a counter view. 

Comment: Pat Gaffney 
Utilities like water, electricity, and railways should NOT be privatized. They 
are the responsibility of the Government. Emergencies/ response / analysis 



etc are the responsibility of Government. Therefore, they should have 
dedicated resources for this purpose. 

Suman Nadella 
We understand your concern, but think that the issue is largely about cost, 
not privatization. Currently, the government uses existing commercial radio 
stations to broadcast alerts to the public concerning severe weather and 
abducted children. The US government could maintain a completely 
independent set of broadcast towers and infrastructure that could then 
saturate the airwaves with warnings in the event of an emergency. However, 
everyone realizes that the cost of maintaining completely duplicate 
infrastructure, only to be used once or twice a month is not cost effective. 
What SPRUCE does is simply permit supercomputer resources to be used 
for Urgent Computation. Could the US build a supercomputer center 
specifically designed for Urgent Computation? Yes. Would it be the best way 
to use government money? That's a policy question that machine 
stakeholders need to address. We believe that the responsible use of large-
scale resources can be a community service. 

Questioner: Mary Thomas 
What are your plans to adopt this system to sensor networks or FPGA's? 

Suman Nadella 
We currently have no plans for integrating sensor networks or FPGA except 
as they may trigger Urgent Computing jobs. For example, the tornado 
modeling folks have radar data that can be used to trigger a full-scale Urgent 
Computing job. Sensor networks may also play an important role in triggering 
a large computation. FPGAs may be a place where specialized computation 
can run, but we have not explored that area yet. 
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Abstract. Advances in numerical modeling, computational hardware,
and problem solving environments have driven the growth of computa-
tional science over the past decades. Science gateways, based on service
oriented architectures and scientific workflows, provide yet another step
in democratizing access to advanced numerical and scientific tools, com-
putational resource and massive data storage, and fostering collabora-
tions. Dynamic, data-driven applications, such as those found in weather
forecasting, present interesting challenges to Science Gateways, which
are being addressed as part of the LEAD Cyberinfrastructure project.
In this article, we discuss three important data related problems faced
by such adaptive data-driven environments: managing a user’s personal
workspace and metadata on the Grid, tracking the provenance of sci-
entific workflows and data products, and continuous data mining over
observational weather data.

Key words: LEAD, science gateways, cyberinfrastructure, data & metadata
management, provenance, data quality, data mining, streams

1 Introduction

Science has evolved over the past several decades, from an empirical and the-
oretical approach to one that includes simulations and modeling [4]. Addition-
ally, scientific discoveries are increasingly propelled by large, inter-disciplinary
groups working across geographical boundaries [40]. For instance, projects such
as the Large Hadron Collider aim to solve grand-challenges in science through
a collaboration of over 4000 scientists from 40 countries and having access to a
central particle accelerator facility costing over US$2 billion [32].

Several advancements in scientific application and computer science have
contributed to this evolution. Numerical techniques and algorithms have im-
proved, allowing the real world to be modeled more accurately than ever before
[16]. Weather forecasting models such as WRF, short for Weather Research and
Forecasting, can now accurately predict regional mesoscale weather at resolu-
tions of 1Km grid spacing, with an accuracy of over 80%, 5 days in advance of



the weather, by integrating data streams across dozens of physical dimensions
[20].

Similar advances in computational hardware can now be leveraged trans-
parently through Science Gateways [12] that are built on top of standards such
as the Common Component Architecture [3] and the Open Grid Services Ar-
chitecture (OGSA) [10]. Science Gateways, also known as Grids or Cyberinfras-
tructure, have democratized access to advanced numerical tools, computational
cycles, and data resources, that can be uniformly and conveniently accessed by
the average scientist through online Portal interfaces [21].

However, environmental sciences such as mesoscale meteorology pose special
challenges to these Science Gateways since they are largely triggered by events
occurring in the external environment. A common requirement that exemplifies
this is when a coarse-resolution regional weather forecasting simulation detects
a precursor signature of a tornado in a certain region, it should spawn off
another fine-resolution simulation in that specific geographical location to see
if a tornado is indeed going to form. There are three key implications of such
scientific applications that need to be addressed. One, scientific simulations
have to be designed such that their structure is dynamic. Secondly, compute
and data resources provisioned for the scientific experiments need to adapt to
such external events. And lastly, there should be the ability to manage large
volumes of data and associated metadata that are generated by various sensors
and instruments deployed globally and from the experiments themselves.

In the subsequent section, we delve deeper into the challenges posed by the
adaptive and dynamic needs of environmental sciences, and use mesoscale mete-
orology forecasting in the context of the Linked Environments for Atmospheric
Discovery (LEAD) [9] project as an example to motivate the problems. In Sec-
tion 3, we discuss the LEAD Cyberinfrastructure that we are building and the
various enabling technologies in it. In Sections 4, 5, and 6, we will look more
closely at the data management problems when dealing with terascale data,
and successively look at the myLEAD personal metadata catalog to describe
and manage user’s data, the Karma provenance framework to track scientific
data products and execution of experiments, and the Calder data mining tool
used with streaming data. Finally, in Section 7, we summarize and present our
conclusions.

2 Motivation: Mesoscale Weather Forecasting

Weather forecasting is a static process. Models ingest data generated from sen-
sors like radars, mobile meso-nets, upper-air balloons, geostationary and polar
orbiting satellites, commercial aircrafts, and surface observations, for a cer-
tain temporal and spatial range required by the forecast model. Then, analysis
and assimilation of these data sources take place by performing quality control
checks, extrapolating missing data points, and creating a 3D model grid of the
forecast region at the given resolution. This is followed by running the actual
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prediction algorithms using weather models configured by the scientists, and
mining of the data to detect abnormal weather patterns. The final step gener-
ates 2D/3D images and animations of the forecast that can be disseminated to
the scientists and end users. A typical regional prediction of this nature takes
about 4 hours to complete, depending on the size of the region and resolution
of the forecast.

The key problem with such a model is that it is completely static and the
forecast is pre-scheduled to run at certain intervals. Even if a hurricane signature
is detected during the data-mining part of the experiment, no action can be
taken till the experiment completes, the weather researcher reviews the results,
and manually configures and starts another forecast for that particular region.
The LEAD project aims to take this well-oiled static computational science
mesoscale meteorology forecasting process and tear it apart to be dynamic in
response to the environment. There are several benefits to doing this and are
supported by recent advancements in weather research.

Firstly, regional observational models have better forecast accuracy for a re-
gion than do continental models because the resolution of the latter has to be
coarser in order to even run on today’s computer systems. The solution is to
selectively nest regional forecasts within a larger continental model. Secondly,
steerable radars, notably the CASA Radars, are now being deployed. These al-
low the focus and collection of high-resolution data on narrow regions, instead
of performing 360◦ swathes all the time. These dynamically steered instruments
can be leveraged to increase the forecasting accuracy. And lastly, democratiza-
tion of scientific resources is now possible through community resources such
as Teragrid [6] and the availability of well established standards for accessing
them. High-schools students can now get access to and learn about the same
tools and resources used by weather researchers.

These advances require concomitant advances in fundamental ways in which
computational science is done, before they can be leveraged to the fullest extent.
These advancements include:

1. Adaptivity in computational models, allowing them to react to external
events,

2. Adaptive detection and response to weather, through continuous data min-
ing and instrument steering,

3. Adaptive use of available resources to respond to current computational
and data load, and priorities of tasks, and

4. Ability for the underlying data subsystem to mine, record, track, and an-
notate data products in real time.

In the next section, we give an overview of the overall LEAD architecture. An
appreciation of the portal interface to the system and the experiment execution
tool is useful for the understanding of the remainder of the paper; so we provide
that as well.
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Fig. 1. The LEAD infrastructure is assembled as a set of services that interact with
compute, data, and sensor resources, and accessed by a user through a portal.

3 The LEAD Cyberinfrastructure

The LEAD vision is to effect a paradigm shift in the way computation science
in mesoscale meteorology is performed, brought about by a service framework
for data search and model execution, for weather researchers, and students
and teachers at K-12 levels and beyond. The LEAD Cyberinfrastructure builds
upon a Service Oriented Architecture (SOA) to provide a uniform and secure
interface to access resources of common interest to a distributed community
of users [12]. Figure 1 illustrates this architecture. At the bottom are physical
resources, such as computational clusters, mass-storage, instruments, and sen-
sors. The service architecture virtualizes these resources so that they can be
accessed using standard protocols and interfaces, without worrying about the
underlying architecture or implementation. The OGSA standard [10] is com-
monly used as the foundation for resource virtualization in many Grid systems.
These resources can be grouped as a set of core services that include security
services for authentication and identity mapping, data services for moving, stor-
ing, replicating, searching, and accessing data, resource management services
to schedule and monitor resources, and execution management services to plan,
schedule, and manage the lifecycle of jobs run on the Grid.

On top of these core services are gateway services that provide value-added
functionality and are directly exposed to the user community. These include cer-
tificate services for identity management and single sign-on capability, metadata
catalogs, resource registries, notification services, workflow engines, and appli-
cation services. The LEAD Portal acts as an online desktop for the users of
the gateway, and provides visual interfaces to interact with the various gateway
services.
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Fig. 2. Typical weather forecasting workflow in LEAD. It goes through stages of
ingesting and preprocessing observational data, assimilating it into a 3D grid, running
the prediction model on it, and disseminating the forecast as graphics and animations.
Each box is a service and their execution is orchestrated by the workflow engine in
the center.

Scientists compose experiments, such as complex data searches or model
runs, as workflows, which consist of domain and middleware services connected
as a graph. Domain applications are wrapped as web-services using the Ap-
plication Factory Toolkit [19]. These application services can be graphically
connected together to represent the dataflow between them using the XBaya
workflow composer GUI [33], which then compiles the workflow into a Jython or
BPEL [1] script that can be executed. A typical weather forecasting workflow
is shown in Figure 2. The rectangular boxes represent scientific applications
exposed as web-services using the Application Factory. The dotted lines signify
dataflow, in the form of files consumed, transformed, and produced by the ap-
plications. A workflow engine [39] acts as a central service that orchestrates the
invocation of each service in the workflow according to the execution logic.

The adaptivity requirements posited in the previous section are addressed by
the LEAD Cyberinfrastructure. The workflow engine is capable of receiving no-
tifications about external weather events that take place, and dynamically alter
the execution logic for experiments. This allows for the adaptation of the com-
putational model at runtime. Data mining applications constantly monitor data
streams from various sensors looking for abnormal weather signatures. Based
on the type of weather activity, these applications can configure and launch
an appropriate workflow for the specific geographical region. Resource brokers,
self-management services, and monitoring services detect and adapt to failures
in the hardware and service substrate, and also provision available services to
the required tasks at hand. Provenance services recording workflow execution
help workflows resume from points of failure. Personal catalogs tracking a user’s
experiment assist in reconfiguring and restarting workflows, as also in providing
the current status of workflows to the user. These data management tools that
enable adaptivity are described in the sections below.
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4 myLEAD: Personal Metadata Catalog

The myLEAD personal workspace comprises of a metadata catalog service and
a separate back end storage manager. The notion of a separate DBMS hosted
catalog for metadata is gaining a foothold in computational science through
tools such as myGrid [14], MCS [38], and SRB [31], in distributed computing
through Lustre [15], and even in enterprise networks through the Acopia ARX
[26].

The myLEAD metadata catalog accepts data product descriptions on a
wide range of data products including text, binary, images, workflow scripts,
and input parameters. Data product descriptions arrive at the catalog as XML
documents coded according to the LEAD Metadata Schema (LMS) [30]. A thin
service layer provides atomic inserts into the catalog and back end, and performs
other duties in cooperation with the workflow system [13]. Early inspiration for
the metadata catalog is the Globus MCS metadata catalog [38], and it utilizes
the service interfaces provided by the UK e-Science OGSA-DAI tool [2]. It
is a distributed service with an instance located at each site in the LEAD
Cyberinfrastructure [9]. A user’s personal workspace resides at one LEAD Grid
site, and is backed up to a master site. Metadata descriptions reside in the
metadata catalog, as do smaller data products. Larger products are stored to a
storage service, currently the Distributed Replica Service (DRS) [7].

An early estimate of usage of myLEAD is 500 users, where, at any one mo-
ment, 25 users are executing a large-scale ensemble computational model. Such
ensemble workflows are capable of having up to 1,200 functional applications,
and consume and produce up to 10,000 data products [28].

4.1 Data Model

The logical data model for a personal workspace consists of projects, exper-
iments, collections, logical files, and attributes. Users can store one or more
projects in their workspace. Under the projects, one or more experiments, which
can themselves contain several collections, can be included. Logical files can be-
long to one or more collections, experiments, or projects. The structure of a
personal workspace can vary based on the user’s preference or the design of
the applications that cooperate with the metadata catalog. These logical data
model objects can be described by attributes associated with them. Attributes
can be keywords, or simple or complex name-value pairs that are added during
the creation of the objects and enhanced during future accesses to it.

The relational schema we have developed for the data model is highly gener-
alized. Figure 3 shows the UML diagram for a slightly simplified version of the
database schema. The database maintains most of the components of the data
model in a single table. For instance, experiments, projects, and collections for
all user spaces are stored in a single table. Logical files are kept in a separate
table. The term Attribute is used in the general sense to mean a descriptive
feature of a data object. Hereafter, we capitalize it to distinguish it from the
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Fig. 3. Simplified relational schema of the myLEAD database. The organizational
details (experiments, projects, etc.) and application attributes are coded in the data
and not in the schema. This gives the catalog independence from the scientific domain.

database table of the same name. As depicted in Figure 3, an Attribute is imple-
mented in the database schema as attribute and element tables. In the attribute
table, the name and structure (i.e., data type) of a possibly complex Attribute
are defined. The element table specifies a 〈name, value〉 pair belonging to one
or more entries in the attribute table.

The attribute table defines attributes as containing one or more elements.
Here, an attribute can be added on-the-fly by adding a new row to the attribute
table. Although it is slightly more complicated because the attribute must be
declared before an instance is created, this design decision reflects the balance
we maintain between support for annotations after-the-fact and efficient query-
ing. Additional details on the schema and database support can be found in
[18].

4.2 Storing and Querying Metadata by a Hybrid Approach

In the myLEAD metadata catalog, the metadata of the data product is shredded
into both Character Large Objects (CLOB) and relational tables. Due to the
focus of the catalog on locating data objects that meet a specified criteria,
the XML LMS document is stored using a hybrid technique employing both
inlining and shredding [18]. Parts of the document received at the catalog are
stored as CLOBs in the database for faster reconstruction. Key pieces of the
schema are shredded (broken apart) for fast querying. This eliminates the need
for achieving lossless shredding from XML since the shredded data is no longer
needed to construct the XML documents returned in query responses.

4.3 Service Architecture

The myLEAD personal workspace is a distributed tool as depicted in Figure 4.
At the lowest layer, there are set of distributed storage services such as the Dis-
tributed Replica Service (DRS) [7] for the personal data products and Unidata’s
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Fig. 4. Architecture of myLEAD personal workspace. The agent is a single service
layer on top of the storage repository and the metadata catalog. It intercepts workflow
activities by listening on event notification channels.

THREDDS Data Server (TDS) [8] for the public data products. Metadata on
personal data products is managed by the myLEAD service and stored to a
relational database. Much of the logic is implemented as database stored pro-
cedures. The data products themselves are either co-located with the metadata
in the database (as in the case of workflow scripts), or passed to a replica man-
ager, such as DRS. We envision providing support for TDS in the future, which
provides features specific to the meteorology domain, such as sub-setting and
aggregating files, and extracting fields from binary netCDF file. The server is
a long-lived grid service built on top of a relational database. It is built on the
OGSA-DAI service [2] interface layer.

The myLEAD agent provides client-side services for human users working
interactively through the portal, and to other services in the LEAD system,
particularly the workflow execution engine. The myLEAD agent responds to
activities being carried out on the LEAD Cyberinfrastructure by listening on an
event notification channel [17] on which status events about workflow progress
are published. The agent uses the notification messages to determine the cur-
rent state of a particular workflow, and actively manages the user space by,
for instance, creating a new collection when a major mode transition has taken
place [29]. Users interact with the tools primarily through the LEAD Cyber-
infrastructure [11]. However, we are building user interactive features beyond
the portal, such as to download and visualize archived experiments on their
laptops.

5 Karma: Provenance Framework

Provenance [34, 5] is a form of metadata that describes the causality of an
event, and the context within which to interpret it. Provenance about workflow
executions is vital for scientific workflows and experiments to ensure that the
exact sequence of tasks executed in the experiment is recorded [34]. This log,
called the workflow provenance, describes the events that took place during
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the course of a workflow’s execution and tries to address the questions of what
services were invoked, where the workflow and services ran, what their inputs
and outputs were (including data products used and produced), who invoked the
workflow, and so on. This type of provenance is necessary to verify and validate
the experiments at a later time, and brings in accountability. It is a useful
debugging tool post-execution and a monitoring tool while the experiment is
running. It can also be used to track resource usage and help with scheduling
future runs of the workflow.

Provenance about data generated by and used in workflows is termed data
provenance. It attempts to answer questions about the origin of the data (in
the form of workflows or services that created it), the input data that were
transformed to create this data, and the usage trail for the data product. This
form of provenance is necessary to discover the creator of the data, to provide
insight on its quality, and may also help determine its copyright. The data usage
trail also comes in handy when users of the data need to be notified of potential
errors in the creation of the data.

The Karma provenance framework [35] collects both these forms of prove-
nance for the scientific workflows running in the LEAD Cyberinfrastructure.
The provenance model is designed around an abstract workflow model and ac-
tivities defined at different parts of the workflow help collect provenance. A key
application of the collected provenance is in estimating the quality of workflow
derived data products in the LEAD system.

5.1 Provenance Model

The Karma provenance framework [35] used in the LEAD project uses an ab-
stract model of a workflow, which it considers as a directed graph, with nodes
representing services and edges representing the dataflow between them. Ser-
vices are used as a layer of abstraction on top of scientific tasks to enable their
use in a SOA [19]. As a workflow executes, different services are invoked in
sequence by a workflow engine interpreting the workflow logic. Data products
and other parameters are passed as inputs to the service, which subsequently
emits the generated data products. Invoking a service consists of staging the
input files to the service location, launching the scientific task that the service
wraps (usually as a command-line application), monitoring the execution of the
scientific application, registering the output result from the application with
the myLEAD catalog, and staging the data to a central data repository. These
files may be used by subsequent services invoked by that workflow or other
workflows.

As can be seen, the workflow execution takes place at 3 levels: at the work-
flow engine level, at the service level, and at the scientific application level.
The Karma provenance framework tracks provenance as activities that take
place at different stages of the workflow. These activities in a workflow are
distributed across various dimensions, one of them being the level. The ac-
tivities, such as WorkflowStarts/Finishes, ServiceStarts/Finishes, and
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Fig. 5. The Karma Provenance Architecture. Workflows executing at the bottom
publish provenance activities to a notification broker in the middle. These XML ac-
tivities are subscribed to by the Karma provenance service at the top and recorded
in a database. The provenance graph is reconstructed just-in-time and disseminated
when queried for by clients.

ApplicationStarts/Finishes, take place at the boundaries between different
levels. In addition, the activities contain a logical timestamp that helps order
them and tracks the causality of the events. A third parameter present in the
activity is the host where the event took place, which captures the distributed
nature of the execution across organizational boundaries. Finally, two activi-
ties, DataProduced/Consumed, generated by the applications, help to track the
dataflow between the applications.

Based on these activities generated by the various components of the work-
flow, a dynamic model of the workflow execution and the dataflow between
the services can be constructed at workflow runtime. These activities are col-
lected by the central provenance service, and used to build the workflow and
data provenance graphs, and query upon them. Figure 5 shows the architecture
of Karma. As the workflow executes at the bottom, its components produce
activities, represented as XML notifications published to a pub-sub notifica-
tion system [17]. The Karma provenance service subscribes to these activities
and records them in a relational database. When a client queries the Karma
service for workflow or data provenance through its web-service interface, the
activities are reconstructed and composed together to form the workflow or
dataflow graph, and returned to the client as an XML provenance document.
Client libraries and the Application Service Toolkit [19] automate and ease the
user’s burden of generating these activities. Empirical performance measures
have shown the overhead for collecting provenance activities to be under 1% of
the application run time [36].

5.2 Provenance and Data Quality

One novel use that provenance is being applied to in LEAD is in predicting the
quality of data products generated from the workflows. It is intuitive that the
way a data is created has a bearing on its quality. Since provenance describes the
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Fig. 6. Model to evaluate quality score of data product using various metrics applied
to metadata attributes based on user-defined quality constraints. At the bottom are
the attributes that affect the data’s quality, and they are aggregated, using various
metrics and user-defined constraints, to the overall quality score for the data at the
top.

derivation history of data created by a workflow, it can be leveraged to estimate
the data quality. Provenance forms a key attribute in the generic quality model
[37] being used to quantify the quality of data products in LEAD. Such a
quantification is necessary to allow comparison of data products when a user is
trying to locate data for input to a workflow or for visualization and analysis.
Typical search techniques for scientific data depend on the user to provide
values for attributes that are then matched. These usually end up being too
broad resulting in a large number of results with little to distinguish between
them. Our quality model brings in not just the intrinsic metadata available for
the data product, but also hidden (or indirect) metadata such as the quality of
service of accessing the data product, the community’s perception of the data,
and data provenance.

Recognizing that quality is a very subjective matter, our quality model al-
lows the users to define quality constraints on the intrinsic and hidden attributes
of data products at a fine granularity [37]. The constraints are rules that define
the relative importance of each attribute, which can then be evaluated for each
matching data product and aggregated into a numerical quality score for the
data product. This score then forms the basis for filtering query results and
presenting only the most relevant data products in a sorted order to the user.

The quality model [37] used to evaluate the user’s quality constraint is
shown in Figure 6. Starting at the bottom, we have various intrinsic meta-
data attributes and indirect attributes available for a data product, including
the provenance, represented as process metadata and input parameters. Based
on the type of the attribute, different techniques are used to measured and
converted them into a numerical estimate. For example, provenance is used to
construct a quality model for the process deriving that data, and this model
is used to generate a provenance quality score for the data. Quality metrics
modeled as weighting functions are applied to the quality scores for attributes,
guided by the user’s constraints. These result in an aggregate quality score for
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each metric, that are further combined into a single overall quality score for the
data product. This score can then be used to rank the data product and help
in the data search process.

6 Calder: Stream Mining of Environmental Data

In LEAD, the forecasting application is a special kind of data driven applica-
tion that is triggered when an abnormal weather event is detected. Dynamic
execution of forecast models is specified using a rule-action paradigm. A rule,
defined by a user and run for a specific period of time, is a combination of filter-
ing tasks and data mining actions triggered by the occurrence of certain events.
The action portion of the rule-action paradigm is an invocation that kicks off
a latent forecast model. Continuous data mining is performed in LEAD using
the Calder system. A brief description of the dynamic adaptation scenario in
LEAD is provided in [43].

Calder [41, 25] is a web-service that performs continuous query execution
over real time streams of observational data (Figure 7). The query submis-
sion, modeled on OGSA-DAI [2], is through a data service that implements
an extended realization of the GGF DAIS specification to stream systems [24].
Queries are expressed as event-action SQL queries deployed into the system dy-
namically at runtime with an associated lifetime. Calder is responsive to asyn-
chronous stream rates and has sophisticated event scheduling mechanisms that
improve the service time compared to conventional stream processing [27]. The
Calder system contains a distributed query service and a stream provenance ser-
vice. The distributed query planner optimizes the queries and distributes them
among computational resources using a cost-efficient model [23]. The prove-
nance service uses different models [42] to track the provenance of streams and
queries in the system.

In LEAD, Calder is invoked from within a workflow as shown in Figure 8,
which shows the execution of the data mining algorithm on the observational
NexRad Level II data. The request to the Calder stream query service returns
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Fig. 8. Stream processing to detect vortices in Doppler radar data (below) as part of
a larger workflow (above).

when the data mining results in a response trigger, such as “bad weather found”.
The Calder system communicates with external LEAD components using a
common notification bus that transports WS-Eventing messages [17], and a
separate, internal event channel for the transfer of data streams. Calder’s query
execution engine subscribes to channels that stream in observational data as
events. These events are either described by XML metadata or arrive as bzipped
binary data chunks.

When the query is instantiated at the computational node, it executes the
filtering/data mining loop depicted at the bottom of Figure 8 for every incom-
ing NexRad Level II Doppler radar volume scan. If the classification algorithm
detects a vortex pattern whose intensity exceeds a pre-defined threshold (MDA
algorithm [22]) or detects possible storm centers where the reflectivity exceeds
a pre-defined threshold (SDA algorithm), a response trigger is issued to the
WS-Eventing notification channel. The workflow engine subscribes to the no-
tification channel, and acts on the message by waking up the dormant predic-
tion simulation. We are currently expanding the continuous mining scenario
in LEAD to include mining over multiple radars and aggregation of mining
outputs that could be used to monitor the movement of storms over a spatial
region, thereby providing more meaningful information to the forecast system.

7 Conclusions

The LEAD Cyberinfrastructure is providing essential data management tools
that enable computational weather scientists to carry out investigations that
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are dynamically adaptive to weather. These tools, described in this article, al-
low scientists to manage experimental data in a grid-embedded workspace by
automatically cataloging all pieces in the e-Science experiment; precisely track
the execution of the workflow and creation of the data products as provenance
to help scientists verify their results at a later time and to help the commu-
nity in evaluating and reusing the data through quality metrics; and in mining
observational weather data in real time to automatically respond to weather
events by configuring and running computational models, the results of which
could potentially save lives.

LEAD has a major commitment to providing facilities to educational users.
The same tools being developed for weather researchers can also be configured
for students and teachers to run simple weather forecasting models through the
LEAD portal as part of class assignments. Glossaries and ontological dictio-
naries are being developed to assist beginners in learning key concepts about
weather, and techniques such as community quality perception indices used by
the quality model can possibly serve as means for knowledge transfer between
researchers and students.

The data management tools developed for LEAD are also being applied
to other data driven computational science domains with similar dynamic and
adaptive properties. Our contributions, highlighted in this article, make it easier
for the scientist to locate, understand, and use their data, allowing them to
advance the frontiers of science more rapidly.
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Efficient Algorithm to Compute PDEs on

the Grid

Marc Garbey
University of Houston

Abstract. This presentation will discuss the design of numerically
efficient algorithm to solve PDEs on the Grid. Efficiency of numerical
algorithms are strongly dependent on the features of computer
architecture. In western countries the architecture of large scale parallel
computer is essentially driven by industrial cost. Large "Uniform"
Multi-Processors Architecture are replaced progressively by Multi-
clusters Architecture or Beowulf systems that are cheaper. In such
architecture Communication and/or memory access is generally very
slow compare to the speed of the cpu units. Further cpu units may have
several levels of cache and memory. It is then very difficult to achieve
peak performance even on a single computer. The situation does not
seems to improve: cpu flops still increases by a factor 2 every 18
months while bandwidth to access the memory is improving very
slowly. An extreme situation is grid computing for which networks are
at least one or two order of magnitude slower than internal network of
parallel architecture. It is therefore a general problem to design
numerical algorithm that can keep parallel efficiency in such
environment. Meta-computing is a good test bed because it is probably
the most challenging situation to achieve efficiency of a numerical
scheme. Any numerical algorithm that will be efficient on
Metacomputing Architecture such as a grid of parallel computers
linked by a slow network should be of interest for large ASCI machine
as well. There are some simple general idea that one may keep in mind
to design numerical algorithm for PDE applications in grid
environment: - ForWave propagation phenomenon: Speed of
propagation of data in Memory should be the analogue of the speed of
propagation of waves. - For Heat Transfer: Domain of influence of
data in memory should be set according to decay of heat in space, i.e
finite size depending on the level of accuracy. - For Steady flow: Data
representation and space dependencies should match the memory
Hierarchy. - For data transfer in Network, one may split the significant
digits corresponding to required accuracy from the digits required for



stability only. As a matter of fact in most of the applications, one look
for a numerical result within one per cent accuracy and the need to
carry all digits in communications should be review according to
stability theory. In this paper we will concentrate on domain
decomposition methods that are particularly efficient for large scale
metacomputing.
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On the Use of Services to Support 
Numerical Weather Prediction 

Jay Alameda, Albert L. Rossi, Shawn Hampton 
University of Illinois at Urbana-Champaign, National Center for 

Supercomputing Applications, 1205 W. Clark St., Urbana, IL, 61801, 
jalameda@ncsa.uiuc.edu

The challenges of building an effective grid-based problem solving 
environment that truly extends and embraces a computational scientist’s 
traditional tools are multifold.  It is far too easy to build simple stovepipes that 
allow fixed use patterns, that don’t extend a scientist’s desktop, and fail to 
encompass the full range of patterns that a scientist needs to find such a 
problem-solving environment as a liberating and enabling tool.   In the LEAD 
project, we have focused on the most challenging users of numerical weather 
prediction, namely, the atmospheric science researchers, who are prone to use 
their own tools, their own modified versions of community codes such as the 
Weather Research and Forecasting (WRF) model, and are typically 
comfortable with elaborate shell scripts to perform the work they find to be 
necessary to succeed, to drive our development efforts.  Our response to these 
challenges includes a multi-level workflow engine, to handle both the 
challenges of ensemble description and execution, as well as the detailed 
patterns of workflow on each computational resource; services to support the 
peculiarities of each platform being used to do the modeling (such as on 
TeraGrid), and the use of an RDF triple store and message bus together as the 
backbone of our notification, logging, and metadata infrastructure.  The design 
of our problem-solving environment elements attempts to come to grips with 
lack of control of elements surrounding and supporting the environment; we 
achieve this through multiple mechanisms including using the OSGI plug-in 
architecture, as well as the use of RDF triples as our finest-grain descriptive 
element.  This combination, we believe, is an important stepping stone to 
building a cyber environment, which aims to provide flexibility and ease of 
use far beyond the current range of typical problem solving environments. 



1 Numerical Weather Prediction as a science driver (Linked 
Environments for Atmospheric Discovery, LEAD) 

Numerical Weather Prediction, in its current form, revolves around pre-scheduled 
computations, running models such as the Weather Research and Forecasting (WRF) 
[WRF] code on fixed grids, using observations statically obtained on a fixed 
schedule, to generate predictions of future weather, as depicted in Figure 1. 

The National Science Foundation funded information technology research project, 
Linked Environments for Atmospheric Discovery (LEAD), was funded to address 
the shortcomings in the traditional forecasting methodology, and, for the first time, 
provide a means for people and technologies to interact with the weather [LEAD].  
This project, a partnership of researchers from the University of Oklahoma, Indiana 
University, University of North Carolina at Chapel Hill, University of Alabama in 
Huntsville, the University of Illinois at Urbana-Champaign, Millersville University, 
Howard University, Colorado State University and University Corporation for 
Atmospheric Research (UCAR), is doing basic information technology research into 
the issues to enable models to respond to observations, as well as have models and 
algorithms drive sensors.  This research is resulting in an integrated, scalable 
framework that allows analysis tools, forecast models and data repositories to be 
used as dynamically adaptive, on-demand systems that adapt in response to the 
weather, respond to users, initiate processes automatically, steer remote 
observatories, and operate independent of data format and location, as well as 
location of compute resources.  The group at Illinois has been focusing on the use 
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Figure 1. Traditional Numerical Weather Prediction Methodology (credit: K. Droegemeier, U 
Oklahoma)
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cases provided by our atmospheric science researchers.  These researchers can be 
characterized by: 

having their own research computing allocations 
need to modify community codes or write their own codes 
work both remotely and locally on their own workstation 
always looking to innovate by asking tough questions: i.e., what will the 
weather look like with today’s moderate risk of severe weather? 
Need to work with tens to hundreds of simulations 

In this paper, we will describe the particular infrastructure we developed to meet 
these requirements, starting with our context within the LEAD Architecture. 

2 LEAD Architecture 

The LEAD project has broadly defined a service architecture, depicted abstractly in 
Figure 2.  In this figure, user interfaces are clients of a set of crosscutting and 
configuration and execution services, which in turn access distributed resources 
through resource access services, such as those provided by the Globus Project 
[Globus] 
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Figure 2. The LEAD service architecture.  The majority of work within LEAD is in the area of 
crosscutting services, user interfaces, and configuration/execution services.
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For our work with researchers, our focus has been on services and interface elements 
as depicted in Figure 3.   

Our application partners have the following requirements that have shaped our work.  
First, they need a facility to manage a large number of runs.  Secondly, they need 
efficient interactions with their desktop platform. Thirdly, they need to be able to 
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Figure 3. Context of UIUC contributions to LEAD within the LEAD service architecture.  We 
are building a facility for managing atmospheric science ensembles, the Ensemble Broker, and 
a group of supporting services for this facility.
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Figure 4. Siege and Ensemble Broker for managing large numbers of runs.  Troll manages the 
coordination and execution of runs, vizier supplies information necessary for correct execution 
of workflows on remote hosts, and ELF+ogrescript manages all aspects of cluster-local 
execution.  Tying this all together is notification and metadata (in progress).
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Uses myproxy backed with Kerberos

make modifications in a simple and powerful way – for instance, to add their own 
application, or to change their pattern of work.  As a result, we developed a simple 
workflow description (ensemble builder to describe the overall interactions between 
jobs, and ogrescript for the compute resource-local orchestration), and a desktop tool 
(Siege) to manage their work.  These pieces, which fit in the context of Figure 3, can 
be depicted schematically in Figure 4, which shows the desktop client, Siege [Siege], 
which interacts with the Troll ensemble broker stack and Vizier information services, 
to deploy applications controlled by the remote application container, ELF, which 
implements our own scripting language, OgreScript.  Tying the system together are 
the notification systems, currently using the Java Messaging Service (JMS) [JMS] 
channel ActiveMQ [ActiveMQ], and a metadata system (we are planning to integrate 
myLEAD into the JMS channel, to be able to create LEAD metadata objects [LMS] 
from metadata events published to the channel). 

The Siege desktop client is built using the Eclipse Rich Client Platform (RCP) 
[RCP], which has many advantages including ease of interface mockup, pluggable 
modules, and well-defined extension points.  We are also using RCP to build our 
services, as it provides a nice modularity to better manage dependencies, especially 
on third-party libraries such as the jglobus [jglobus] client libraries that we use to 
access grid capabilities such as job submission and file management. 

With Siege, the user authenticates to a myproxy server backed with a Kerberos realm 
[myproxy] to allow delegation of short term grid credentials to the Siege client by 
mere use of a user’s Kerberos login at NCSA or on TeraGrid.  This login, which is 
granted as normal part of a user’s allocation at NCSA, allows users seamless access 
to computational resources through Siege, by use of their familiar Kerberos login (as 
depicted in Figure 5). 

Siege provides simple mechanisms for 
describing, executing and monitoring 
workflows.  For instance, a user can 
directly edit the xml description of the 
workflow, as depicted in Figure 6.  
One such user prefers this, as the user 

can directly manipulate 
ranges of parameters to be 
explored in a parameter 
space study.  The XML 
description of the ensemble 

is expanded into the full graph of execution at job submission time. 

We are also prototyping user interfaces which guide the user to describe ranges and 
intervals of variables to be studied, in this case for a research weather code.  The 
prototype, shown in Figure 7, depicts indication of default ranges and variable value 
possibilities as well. 

Finally, we have prototyped a specific interface which is designed to allow the user 
to use Unidata’s Integrated Data Viewer (IDV) [IDV] to select the center of a 

Figure 5 Siege MyProxy login, which uses Kerberos 
authentication for NCSA and TeraGrid. 
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domain to model the atmosphere using WRF, and then simply launch and monitor 
the resulting model on TeraGrid resources.  This interface was integrated to allow 
straightforward visualization of the model results in IDV as well, and is depicted in 
Figure 8. 

Figure 6. Direct editing of ensemble-builder workflow description is provided as one 
possibility within Siege.  The XML description of the ensemble is expanded into the full graph 
of execution at job submission time 

Figure 7.  Prototype parameter study interface for weather research code 
.
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3 Real Grid Resources 

The cyber infrastructure we have described so far, Siege plus its supporting services, 
are designed to work with grid resources [grid] as their target for supporting 
computations.  In the context of NSF-funded computational resources, all 
computational resources are under the TeraGrid [TeraGrid] umbrella.  The 
implications of this are multifold – first, one desirable result is that all TeraGrid 
platforms support common grid services.  Secondly, there is supposed to be a 
common environment on all platforms (a goal which has proven harder to achieve 
than previously suspected), and lastly, there are no other grid resources available for 
a user to check against teragrid – unless you had your own test bed.  One additional 
complexity: in TeraGrid in 2006, over 20 completely different computational 
architectures are represented.  This means that the pain of porting and validation are 
very much there – not to mention performance optimization for each platform. 

The mechanism used in TeraGrid to invoke the correct environment is softenv.  
Softenv essentially sources a script, establishing all relevant paths.  The 
configuration of the environment is controlled through a user-configurable “.soft” 
file, which in the end establishes the source file.  This is fine for users that are using 
the resources in a traditional fashion, i.e., doing local batch submissions of codes and 

Figure 8  Simplified Unidata Workshop facility, which is integrated with the 
Unidata IDV, and allows simple selection of domain center latitude and 
longitude, as well as the NAM dataset for model initialization.
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problems that were built on the resource in question, but, it makes little sense for 
users of Siege who, in the end, we hope don’t need to log onto a resource to take 
advantage of its capabilities.  So, as a rule, we don’t want to rely on users modifying 
their “.soft” files, with potential adverse effects to their environment – and, to be 
sure, we even want to use accounts where users may have inadvertently broken their 
environment, by establishing a correct environment for the scientific application in 
question.  We would also like to invoke the correct environment at job-submission 
time, through the Globus GRAM Resource Specification Language (RSL) [RSL]. 

4 Results 

We have been able to use the Siege user interface and service architecture to manage 
runs made in the course of the Unidata workshop in July 2006 [UnidataWorkshop], 
as well as to support one of the coauthors (Jewett) work in understanding parametric 
sensitivities for interacting thunderstorms.  Through this, we have observed that we 
have a number of issues to address with respect to scalability and robustness – in no 
particular order: 

in-memory service state is hard to manage, we need to persist all such state 
to a relational database so that services can be brought back up seamlessly 
without loss of information 
gridFTP servers appear to have an issue handling many clients, with 
difficult-to-diagnose failures as a result 
the web services in the stack need to be few in number, as well as close to 
transactional as possible, with small items being used per interaction rather 
than complex objects 

But, even with the issues identified for resolution, we were able to successfully 
support the modeling efforts of the workshop attendees as well as our coauthor, and 
have charted a path for improved performance and scalability of the underlying 
service stack.  We also have shown that the Eclipse Rich Client Platform provides a 
powerful, flexible alternative user interface which integrates well with a user’s 
desktop platform.  The use of JMS for messaging has also proven to be a good 
choice, for its inherent flexibility and malleability to a variety of other messaging 
systems, as well as its performance, and finally, the ability to perform cluster-local 
orchestration readily facilitates local monitoring of batch processes 
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Q&A – Jay Alameda 

Questioner: Bill Gropp 
What did you need to modify in the GSI Authorisation service? Was there 
some missing feature or functionality? 

Jay Alameda 
No problem building a simple stateless service ... we just wanted to add 
transport level security.  We documented our experience on our wiki, at 
http://torcida.ncsa.uiuc.edu:8080/confluence/display/MRDPUB/Building+Web
+Services 

Questioner: Mary Thomas 
Can your client run using dynamic IP addresses? 

Jay Alameda 
So far it has worked pretty well from hotel networks etc. Biggest problem has 
been gridFTP - need one way connections ... problems with firewalls.  This is 
well documented at http://www.globus.org/toolkit/security/firewalls/. 

Questioner: Gabrielle Allen 
Can you explain more about your monitoring infrastructure, in particular how 
reliable is it? 

Jay Alameda 
We use JMS natively as our messaging/monitoring infrastructure, with 
activeMQ as the implementation of choice.  Out of the box, this has worked 
well, though we have found some edge cases where “message storms” will 
bring down the channel.  We are investigating message bus reliability 
techniques such as channel federation to address these issues. 

Questioner: Brian Smith 
You mentioned problems of porting your large application between the 
various TeraGrid sites. Can you briefly summarise the nature of the problems 
encountered? 

Jay Alameda 
Managing the software environment in a consistent fashion is one large 
problem on TeraGrid; coupled with uneven compiler and library quality 
across the wide range of resources of the machines, as well as specific 
uncontrolled configuration differences in service and machine configurations 
that cause surprising side effects, make managing functional builds of 
scientific codes a challenging endeavor. 



Comment: Bill Gropp 
 When looking for a common environment, you need the same semantics not 
just syntax. It is important for the users to be engaged in this, not to just ask 
for the same syntax for routines/calls/services. 

Questioner: Bill Gropp 
You mentioned scaling issues which Pete Beckman has called the "system 
call storm"; you experienced that with JMS. Should components provide, as 
quality of service, information on their scalability (either tested or designed)? 

Jay Alameda 
Would be great - really like that idea. 

Questioner: Michael Thuné 
There are many technical details here, but the ultimate goal is to have a 
system that is useful and convenient to the users. Now, you had this 
interesting LEAD day with 50 users involved. Can you describe the methods 
you are using to collect the experiences of these users and to feedback into 
the technical design? 

Jay Alameda 
Have started process ... evaluations formal and informal, including social 
studies people.  This has resulted in a report from the workshop, and is now 
continuing with a more formal test program and feedback channel. 
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Abstract. Matchmaking has been a subject of research for many years, but the

increasing uptake of service-oriented computing, of which the Grid can be seen

as a particular instance, has made effective and flexible matchmaking a neces-

sity. Early approaches to matchmaking and current schemes in the Grid com-

munity, like ClassAds, take a syntactic point of view, essentially matching up

literals or satisfying some simple constraints for the purpose of identifying com-

putational resources. The increasing availability of web services shifts attention

to the function of the service, but WSDL can only publish (limited) information

about the signature of the operation which tells the client little about what the

service actually does. The focus in the MONET (www.monet.nag.co.uk)

and GENSS (genss.cs.bath.ac.uk) projects has been on describing the

semantics of mathematical services and developing the means to search for

suitable services given a problem description. In this paper we discuss (i) the

schema extending WSDL that we call Mathematical Service Description Lan-

guage (MSDL), (ii) a number of ontologies for describing various properties of

mathematical services, (iii) an approach to describing pre- and post-conditions

in OpenMath (www.openmath.org) and (iv) an extensible, generic match-

making framework along with a suite of match plug-ins that are themselves web

services.

1 Relevance to Computational Science

A long term vision for computational science is the realization of a desktop environ-

ment for scientific research, where the scientist is as easily able to find data sets, the

algorithms to manipulate them and the means to display them — in silico experiments

— as they currently do with physical materials in the laboratory — in vivo experi-

ments.

The ability to solve large computational science by the coordinated use of dis-

tributed resources has been advocated by a number of researchers. Work in this area

has primarily focused on the development of “Problem Solving Environments” (PSEs).

A PSE is a complete, integrated computing environment for composing, compiling,

and running applications in a specific area [10]. In many ways, a PSE is seen as a

mechanism to integrate different software construction and management tools, and ap-

plication specific libraries, within a particular problem domain. One can therefore have

a PSE for financial markets [4], for gas turbine engines [8], etc. Focus on implement-

ing PSEs is based on the observation that previously scientists using computational



methods wrote and managed all of their own computer programs – however now com-

putational scientists must use libraries and packages from a variety of sources, and

those packages might be written in many different computer languages. Engineers and

scientists now have a wide choice of computational modules and systems available,

enough so that navigating this large design space has become its own challenge. A sur-

vey of 28 different PSEs by Fox, Gannon and Thomas (as part of the Grid Computing

Environments WG) can be found in [9], and practical considerations in implementing

PSEs can be found in Li et al. [14]. Both of these indicate that such environments

generally provide “some back-end computational resources, and convenient access to

their capabilities”. Furthermore, work-flow features significantly in both of these de-

scriptions. In many cases, access to data resources is also provided in a similar way to

computational ones.

In [7] the authors identify how the original multiphysics problem – in this case a gas

turbine engine simulation – may be considered as a set of smaller simulation problems

on simple geometries that need to be solved simultaneously while satisfying a set of

interface conditions. These simpler problems may be chosen to reflect the underlying

structure/geometry/physics of the system to be simulated, or artificially created by

scientific computing techniques such as domain decomposition. For physical systems

and devices, these sub-problems are usually modelled by partial differential equations.

The next step is to create a network of collaborating solver agents in which each such

agent deals with one of the sub-problems defined earlier. This work therefore also can

be considered as an aspect of PSEs, where a larger problem is decomposed and handed

off to independent agents which can then aggregate their results.

Looking at these two aspects of PSEs together, we can see the need for a “match-

making” process, which is able to: (i) decompose a larger problem into smaller com-

ponents, based on very specific domain dependent information; (ii) map each of these

smaller problem components to particular solvers that can be found in a registry. The

granularity of the decomposition process and the capability inherent within each prob-

lem solver provides two constraints on the usefulness of this approach.

2 Technical Background

The work reported here stems from a series of projects, each focusing on different con-

tributions to the goal of building a computational environment for scientific research:

– OpenMath provides an extensible framework for the authoring of mathematical

ontologies

– MONET demonstrates feasibility of semantic processing from user query to ser-

vice invocation [5]

– GENSS generalizes the matchmaking/brokerage component [16] and extends

matching to conditions and effects [18]

– KNOOGLE implements an open architecture for matchmaking and brokerage

[12]

We will now discuss each of these and their contribution in some more detail.
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2.1 OpenMath

The objective of OpenMath is to provide both a framework for authoring mathematical

ontologies and to provide some fundamental ontologies. We write of ontologies in the

plural because OpenMath supports a structured collection of ontological information

built from components called content dictionaries — referred to as CDs. OpenMath

does not attempt to be a complete ontology of mathematics, but rather provides a com-

prehensive core, including the basic mathematical structures (group, ring, field etc.),

key constants and common operations/functions (trigonometric, hyperbolic, integra-

tion, differentiation etc.). New specialized mathematical ontologies can be added as

the need arises and thus contribute to the broader corpus of mathematical ontologies,

including private CDs (subject to a validation process defined and implemented by the

OpenMath Foundation).

Many browsers support the presentation of mathematical markup through a plug-

in for the W3C recommendation MathML, which takes two aspects depending usage:

(i) MathML-P is for presentation and (ii) MathML-C is for content. The purpose of the

latter is similar to OpenMath, namely to provide a neutral format for the communica-

tion of mathematical information between software components. However, MathML-

C is a fixed ontology that only handles a subset of mathematics. OpenMath comple-

ments MathML-C by being extensible and by being the defined extension language for

MathML-C.

OpenMath markup to some extent still reflects the period of its inception, when

XML was a developing language. Consequently, there is little use of the more recent

more sophisticated features of XML. OpenMath is intended to be as lightweight as

possible so there are relatively few markup tags (see The OpenMath Standard v2.0

[26] for more detail: what follows is an abstracted summary from the standard for the

sake of making this article self-contained):

– OMS: denotes a symbol, where the string name of the symbol and the CD in which

it is defined are attributes of the tag: <OMS cd="arith" name="minus">
– OMV: denotes variable, where the string name of the variable is given in the name

attribute of the tag

– OMI: denotes integer, for example <OMI>2</OMI>
– OMB: denotes a byte array and wraps a base64-encoded XML string

– OMSTR: denotes a string value

– OMF: denotes IEEE floating point number and the attributes may indicate size and

even a value represented as a hexadecimal string

– OMA: denotes application, where its first child is the operator and the remaining

children are the operands.

– OMBIND: denotes the binding constructor which has three children, a binder, a

variable (specified by OMBVAR) and a body

– OMBVAR: variables used in binding constructor as above

– OME: error constructor, which has an arbitrary number of children, the first de-

noting the error and the remainder being OpenMath object relating to the error.
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<om:OMOBJ><om:OMA>
<om:OMS cd="arith1" name="minus"/>
<om:OMA>

<om:OMS cd="arith1" name="power"/>
<om:OMV name="x"/>
<om:OMI>2</om:OMI>

</om:OMA>
<om:OMA>

<om:OMS cd="arith1" name="power"/>
<om:OMV name="y"/>
<om:OMI>2</om:OMI>

</om:OMA></om:OMA>
</om:OMOBJ>

Fig. 1. OpenMath representation of x2 − y2

– OMATTR: the attribution constructor is used to wrap a sequence of attribute

pairs which is how additional textual and semantic annotations of objects are con-

structed.

– OMATP: the attribute pair constructor is used in conjunction with OMATTR

above.

– OMFOREIGN: the foreign constructor, which allows the inclusion of arbitrarily

encoded data, such as:

<OMFOREIGN encoding="text/x-latex">\sin(x)</OMFOREIGN>

By way of illustration the OpenMath representation of x2−y2 is shown in Figure 1.

Detailed information about OpenMath, including the OpenMath 2.0 standard (June

2004) are available from the OpenMath website at www.openmath.org.

By providing the means to structure, author and publish markup for any aspect

of mathematics, OpenMath establishes a way to describe both the functionality of

any piece of mathematical software and the data that it inputs and outputs in an ap-

plication and network neutral format. Thus it contributes to the goal of enabling the

inter-operation of mathematical software components wherever they may be deployed.

2.2 MONET

MONET — Mathematics On the NET — had the objective of demonstrating the poten-

tial of semantic web techniques in service discovery, and given the partners’ previous

work with OpenMath, specifically mathematical service discovery, composition and

invocation. Project details are available via http://monet.nag.co.uk, but we

now summarize the main contributions of the project.

An important problem to solve at the outset was how to publish information about

mathematical web services in a way that could be used to help achieve the project

goals. Consequently, an embedding of WSDL [28], called Mathematical Service De-
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scription Language (MSDL)1 was defined to incorporate the necessary semantic infor-

mation to support the discovery process. As with some OpenMath design decisions,

MSDL is a product of its time: OWL-S was not completed and the tools for DAML-S

were relatively experimental, so while the structure of MSDL documents mimicked

these more general approaches to service description, they were under project control

and allowed demonstration of principle. A complementary Mathematical Query De-

scription Language (MQDL) was defined for posing queries. The structure of the two

schemas is necessarily very similar, comprising the following elements:

Classification: The specification of what the service does (a more detailed description

appears in [5] and [16]):

– Reference to a problem description library — terms supplied by the Mathe-

matical Problem Description Language (MPDL).

– Reference to taxonomies, e.g. to GAMS (Guide to Available Mathematical

Software) [3].

– Supported Semantics, such as which OpenMath CDs the application can pro-

cess.

– Supported Directives, such as solve, prove and decide.

Implementation Details: information about the specific service

– A reference to an Algorithm Description, using entities from the OpenMath

CD containing symbols for describing algorithmic complexity.

– Software Details – information about the hosting software package.

– Hardware Details – self explanatory.

– Algorithmic Properties, including attributes such as accuracy and resource us-

age.

– Descriptions of actions needed to solve a problem.

It should be noted that not all of the Classification or Implementation details are

mandatory.

Service Interface Description: Typically a WSDL document.

Service Binding Description: Map from abstract problem components and actions to

elements of the service interface.

Broker Interface: The API exposed to the broker. Typically, this is a service URI and

an interface description.

The demonstrator architecture is shown in Figure 2 and allows us to trace out two

scenarios:

– Service registration: the provider registering a service submits a MSDL document,

elements of which refer to the MONET and the OpenMath ontologies. The reg-

istry manager then processes elements of the mathematical service description into

OWL because that is the representation over which the Instance Store operates.

That description is then entered into the repository and the process is complete.

– Service discovery and invocation: the client seeking a service submits a Math-

ematical Query Description Language (MQDL) document to the Plan Manager.

1 The XSD schema for MSDL is available from http://monet.nag.co.uk/cocoon/
monet/publicdocs/index.html
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Fig. 2. The MONET Architecture

The mathematical elements of the problem description are then translated into

OWL and passed to the Instance Store to find any candidate services according to

a description logic querying process. The plan manager selects one of the candi-

date services and then invokes the execution manager to handle the actual calling

of the web service. The results are then returned as a Mathematical Explanation

Language (MEL) document to the client.

From a practical point of view the MONET architecture demonstrated the feasi-

bility of semantic match making, but the demonstrator was very limited in that there

is only one repository, one matching technique and one selection policy. Furthermore

the matching technique was essentially using signature information and computing the

equivalent of a multi-method look-up. Nevertheless, by demonstrating end-to-end sup-

port for computational problems using ontological information and web services it had

established the viability of the approach and raised awareness of the direction future

semantic grids research might take.

2.3 GENSS

The purpose of the GENSS (Grid-enabled Numerical and Symbolic Services) was to

build on the outputs of MONET and, in particular to tackle the more complex problems
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inherent in reasoning about the conditions and effects of services, while building links

with the UK’s e-Science research program, arguing that semantic discovery of (math-

ematical) services was an important enabling activity for e-Science. The main outputs

of the project are more sophisticated approaches to mathematical service matching, in-

cluding mathematical analysis of the conditions and effects, the use of multiple match-

ing techniques and access to multiple registries. A detailed report on the matching

techniques appears in [16] while the revised architecture is discussed in [12]. We now

summarize the main contributions of the project.

GENSS Matchmaking Strategy The information source for the matchmaking pro-

cess remains as for MONET: the MQDL describing the query and the MSDL document

describing the service, but now attention was focused on working with the information

about the conditions and effects in each case. One of several difficulties is that the ex-

pressions marked up with OpenMath in the condition and effect fields of the problem

and service description may be equivalent semantically, but be written very differently.

To begin to tackle this problem the expressions are normalized — not in the sense that

there is any absolute normal form for mathematics, just the right one for the current

purpose. Thus a fairly standard set of transformation is carried out dealing with:

– Logical equivalences — using standard rewrites

– Associative operators — are flattened, so for example the OpenMath equivalent of

(+ a (+ b c)) becomes (+ a b c).

– Context dependent equivalences — for example i+1 > 0 ⇒ i >= 1 if i ∈ Z, but

not if i ∈ Q.

– Alpha conversions — consistent naming of variables in problem and service, so

that name comparison is meaningful

– Commutative operators — reorder arguments to bring constants towards the oper-

ator (and subsequently evaluate constant combinations) and so that the left hand

side is less than the right hand side.

– Conversion to disjunctive normal form to capture, if present, the alternatives be-

tween pre- and post-conditions.

As a result, the conditions and effects take on the form Q(L(R)) where:

– Q is a quantifier block e.g. ∀x∃y s.t. · · ·
– L is a block of logical connectives e.g. ∧,∨,⇒, · · ·
– R is a block of relations. e.g. =,≤,≥, �=, · · ·

With a summary of the normalization process in place, the two scenarios of reg-

istration and discovery become relatively straightforward: in the first case, the service

description is normalized and stored in the registry; in the second the query is normal-

ized and the registry is traversed calculating a similarity value between the query and

each service. This latter results in a list of URIs ordered by similarity value.

Matching techniques A major development in GENSS was the idea of a matchmaker

shell within which several match modes could be applied to the service and aggregate

match scores computed. Thus, several matchers were deployed for use in the GENSS

matchmaker:
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– Structural: used to determine whether task and capability match exactly; cheap if

not often very successful

– Syntax+Ontology: used to compare elements and attributes in task and capability

using the taxonomic structure of types to test for inclusion relations

– Ontological reasoning: as had previously been demonstrated in MONET (de-

scribed in section 2.2)

– Function: use conditions and effects expression to establish whether: Tcond ⇒
Ccond∧Ceff ⇒ Teff ; in other words do the conditions of the capability subsume

those of the task and do the effects of the task subsume those of the condition. In

fact, the tests applied aim to establish the equivalence of the given expressions:

– Algebraic equivalence: where we wish to show that Q − S = 0 algebraically

by translating the expression into the input syntax of a computer algebra sys-

tem and calculating the difference. In general undecidable, but the approach

outlined may be useful in practice. For example: x2 − y2 and (x + y)(x− y).
The idea stems from the work of Richardson [21] on the identification of zero.

– Value substitution: where we wish to show that Q−S = 0 by substituting ran-

dom values for the variables in the relation sub-expressions in the Q(L(R))
structure outlined above. This must be done with care: variables must be re-

named consistently and the same random value substituted for a given variable

in each expression. If the result is zero, it is only evidence not proof of equiv-

alence. This relies on later work also by Richardson [22] on the so-called

Uniformity Conjecture

The computation of the similarity score is quite detailed and not easily summarized,

so the interested reader is referred to [16].

GENSS Architecture and Critique The GENSS architecture is shown in Figure 2.3

in which we can identify the various differences with MONET. The most obvious is

that not only are there multiple matcher mechanisms, but those matchers are deployed

as web services that are accessed from the matchmaker. The second key difference is

the adoption of a standard registry component, namely a UDDI registry. However, there

are still several aspects of this design that can be criticized: (i) the matcher work-flow

is fixed (ii) UDDI registry searching is based on textual information (iii) the selection

policy is fixed as the service with the highest similarity score

Work-flow enactment In a further development from MONET where we had posited

a stand-alone broker, in GENSS we also demonstrated how the matchmaker shell could

be turned into a web service and then built into a work-flow. The enactment system

used was Triana2. Like other such systems, it works by scouring specified resources,

such as UDDI registries for services and then displays them in a selection palette on the

side. In Figure 4, the broker has simply been interposed between a widget to read input

from the user and another for the display of results, while in Figure 5 the output from

running the query are displayed. Although this only demonstrates the functionality, it

also suggests the capability, given sufficient suitable services in available registries, of

2 Details of Triana can be found via www.trianacode.org
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Fig. 3. The GENSS Architecture

constructing work-flows including proxy services. By “proxy” service, we mean that

some work-flow elements are instances of the broker that when invoked can discover

and call the appropriate service to meet the requirements, which may themselves have

only been established dynamically earlier in the work-flow.

Generation of Semantic Descriptions The final contribution from GENSS has been

an initial investigation of how mathematical information may be used to help gener-

ate service descriptions automatically. It is widely appreciated that authoring WSDL

is a tedious and error-prone process, so that several Java IDEs will now generate it

automatically for the user. However, we need to generate MSDL, including pre- and

post-condition information.

We had been working with the Aldor language3 and its algebra package as a means

to remove the GENSS broker’s dependency on Maple and thus on licensed software.

The Aldor type system derives from that of Axiom/Scratchpad and provides a two-

level categorical-style polymorphic dependent-type structure that has been established

is adequate, while still remaining decidable for checking, to capture correctly the many

mathematical relations required in building a strongly-typed computer algebra system.

The consequence of this expressive power is that because the type system actually

captures the necessary mathematical knowledge about the function it implements, it

can be used for:

– Automatic wrapper generation

3 The detailed history of Aldor is quite complicated, but it is probably sufficient to say that it

inherits from the computer algebra system Axiom (market by Numerical Algorithms Group

for some years) and Scratchpad (developed by IBM over many years) and is BSD-license

software
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36CoRE, Rutgers University, Feb 06

Fig. 4. A Triana work-flow with matchmaker (Screenshot provided by Tom Goodale)

37CoRE, Rutgers University, Feb 06

Fig. 5. Results from the matchmaker in Triana (Screenshot provided by Tom Goodale)
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– Automatic generation of OpenMath for service description signatures and for (part

of the) conditions and effects

However, it should be emphasized that the OpenMath generation depends on the avail-

ability of the appropriate CDs in OpenMath to reflect the corresponding types in Aldor.

There are several other delicate technical issues that are covered in detail in [18].

GENSS Outcomes The contributions of the project are outlined above, but to put

them in the context of this article, the project demonstrated that it was possible to go

further on the problem of service discovery to examine conditions and effects and that

it was practical to deploy and invoke multiple matchers using the basic technology of

the semantic web — web services — and even to integrate the broker with work-flow

enactment, thus making the broker work with the primary components for computa-

tional science.

3 A generic matchmaker/broker

Reflection on the design and limitation of the GENSS architecture have fed into a

further project called KNOOGLE (pronounced noo-gl), in which the previous system

is being re-factored to produce robust generic tools, and demonstrated in the context

of other current UK e-Science projects.

From a client point of view, the brokerage function can be parameterized by three

requirements:

– Where to find descriptions of entities to match against

– How to match the query against a description

– How to choose between the matched descriptions

Some clients may like to have each of these fixed, whereas others might like the op-

portunity to control some or even all of these at the point of calling the broker. Thus

there is a complete spectrum ranging from no fixed actions to all three being fixed. For

each case, we specify what information the client must provide:

– A set of registries identifies the places to look for candidate services

– A set of matchers, deployed as web services, identifies how to calculate a similarity

score between the query and a service (note: each matcher web service must take

a query description and a service description as arguments and deliver a score in

the range [0, 1])
– A selection policy, defined as a query over the match results, identifies one or no

service to invoke. More details about specifying selection policy appear later.

These three issues lead to a refinement of the GENSS architecture of Figure 2.3 result-

ing in the KNOOGLE architecture of Figure 6, where:

– The registries have been replaced by the UDDI-compliant Grimoires registry,

which supports semantic querying for services and the annotation of services with

various forms of metadata (string, URL and RDF). The broker now accepts a list

of such registries to search for candidate services
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– The matchers are specified as a list of URLs identifying WSDL service descrip-

tions. These matchers are treated as alternatives in that each matcher is invoked

with the query and the service description, resulting in a match-score. This score

is then asserted into a RDF store associating matcher, service and score for subse-

quent assessment by the selection policy.

– The selection policy is specified as a query in the RDQL language over the set of

RDF triples that resulted from the matching process. This query should result in

the identification of either no service, in the case that none satisfies the selection

policy, or one service that does.

Current Developments The KNOOGLE project [20] is currently running and has the

target of delivering tools for end-user construction and deployment of brokers by the

middle of 2007. The broker functionality is planned for demonstration in the context of

two related current projects (also in the UK): (i) GridSAM [6] which provides a client

interface for the submission and monitoring of jobs using the JSDL [1] framework and

(ii) Taverna, which is a work-flow enactment system that has seen much use in the

bio-informatics domain. We now describe these two demonstrators in more detail.

GridSAM: The aim of the GridSAM project is to provide an executable submis-

sion and monitoring service. Each GridSAM instance has a set of processors on which

it may execute programs. The clients of the GridSAM instances must provide their in-

put data and the executable they wish to run, they must also provide a JSDL document

which gives constraints on where and how their program is to be run. The GridSAM in-

stance creates a DRMConnector, which translates the JSDL to processor-specific JCL

and executes the job on the distributed resources. The GridSAM instance also provides

tools to monitor the job’s progress.

One problem with this architecture is the requirement that the client is in posses-

sion of the executable of the code they wish to execute. The client could be relieved

of this task by keeping the code in a repository, accessible to a broker. Our first use

case addresses this issue by placing the broker between the client and the GridSAM
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instance, so the client sends a description of the problem to the broker, which retrieves

the executable from a repository, sends this to the GridSAM instance, then receives the

results back from the GridSAM instance and forwards these back to the client.

A second problem is that the client may not be aware of the resources available, but

would like to search for suitable resources based on some description of needs. This

too can be addressed by brokerage. Thus in the second use case, the client provides the

executable, which the GridSAM instance sends to a DRMConnector augmented by a

brokerage function. The DRM-broker determines what resources are available to be

used, communicates this to the DRMConnector which then deploys the job, receives

the results and passes these back to the client.

Taverna: The Taverna workbench [19] is a graphical environment with which

users can construct, edit, browse and share work-flows. The application provides three

views: one on available services found either locally or in specified registries, another

depicting the work-flow diagram and a third called the model explorer. This last allows

the user to specify input sources and output locations for the work-flow along with the

actual services that will do the work.

There are numerous components associated with the Taverna system including the

FreeFluo work-flow enactor, the KAVE metadata store and the FETA service discovery

component. FETA uses the myGrid service ontology [29], which provides descriptions

of bioinformatics tasks and data types, to express descriptions of the kind of bioinfor-

matics services sought. However, functional descriptions of bioinformatics services

are hard to formulate because the datatypes involved are usually not defined in any

formal type language[15]. Consequently that service information is typically limited

to the name of the service — which might in itself be descriptive, but such informa-

tion is hard to recover — the names of the operations supported and the names of the

input and output parameters. Thus, the lack of type information means there is even

less than a type signature available, so queries are most likely to be stated in terms of

the name of the service sought. Although the query technology is based on JENA and

RDQL, myGrid users apparently do not normally construct their own RDQL queries:

instead they are provided with some prepared queries from which to choose. Taverna

then presents the results in a similar way to that in which other services which are

listed and they can then be dragged into the work flow like any other service.

The objectives of integrating the KNOOGLE broker with Taverna are

– To demonstrate the integration of the broker with a work-flow enactment system.

This has already been achieved with Triana, but Taverna is the approved work-flow

environment for OMII projects.

– To enhance Taverna through the provision of a flexible external matchmaking fa-

cility to complement the built-in FETA system described above, as well as pro-

viding access to external registries and the adding options for (i) the creation of

bespoke matcher/broker components (ii) access to a range of different matching

technologies (iii) the means to embed proxy services in work-flows that can be re-

solved into actual services through the function of the broker, as described earlier

in section 2.3.
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It is perhaps paradoxical that the result of the evolution of the brokerage architec-

ture described here is now little more than a shell, with almost no function in itself: an

instance of the KNOOGLE broker has no registries, no matching function and no se-

lection function; it can do nothing except wait to be supplied with these three pieces of

information. The result of re-factoring has been to hollow out the original architecture

and delegate the functions either to client-specified parameters or externally supplied

web services. Yet the result is potentially more useful, more flexible and more cus-

tomizable than the original. Perhaps evidence of the validity of the statement “less is

more”.

4 Related Work

A variety of matchmaking systems have been reported in the literature over the last

couple of decades, although it seems that almost all are relatively special-purpose or

domain-specific in some way or another and there is little to indicate success in re-

application outside the domain of their original development. Nevertheless, there are

some valuable ideas to be found as we attempt to show in our review below. From

a computational science perspective, we observe that much of the prior art in match-

making has focused on AI or free text and it is only in the last five years or so, with

the advent of widely accepted ontological frameworks, that there has been rising in-

terest in services and service matching. Parts of this survey have appeared in earlier

publications [16, 12].

The SHADE (SHAred Dependency Engineering) matchmaker [13] operates over

logic-based and structured text languages. The aim is to connect information sources

dynamically. The matchmaking process is based on KQML (Knowledge Query and

Manipulation Language) communication [25]. The content languages of SHADE are

a subset of KIF (Knowledge Interchange Format) [11] as well as a structured logic

representation called MAX (Meta-reasoning Architecture for “X”). Matchmaking is

carried out solely by matching the content of advertisements and requests. There is no

knowledge base and no inference performed, however rules may be added dynamically

making MAX flexible and adaptable.

COINS (COmmon INterest Seeker) [13] is a matchmaker over free text descrip-

tions.. The motivation behind COINS is given as a need for matchmaking over large

volumes of unstructured text on the Web and the unsuitability of existing matchmak-

ing technology for such an application domain. Initially the free text matchmaker was

implemented as the central part of the COINS system but it turned out that it was

also useful as a general purpose facility. As in SHADE the access language is KQML.

The System for the Mechanical Analysis and Retrieval of Text (SMART) [23] infor-

mation retrieval system is used to process the free text, producing a document vector

using SMART’s stemming and “noise” word removal, after which document vectors

are compared using inverse document frequency. Such technology could usefully be

redeployed now as a web service and straightforwardly incorporated into a broker us-

ing the architecture outlined above.
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LARKS (Language for Advertisement and Request for Knowledge Sharing) [24]

was developed to enable interoperability between heterogeneous software agents and

had a strong influence on the DAML-S specification. The system uses ontologies de-

fined by a concept language ITL (Information Terminology Language). The technique

used to calculate the similarity of ontological concepts involves the construction of a

weighted associative network, where the weights indicate the belief in relationships.

While it is argued that the weights can be set automatically by default, it is apparent

that the construction of realistically weighted relationships requires human input and

thus impacts the general deployment of such technology.

InfoSleuth [17] is described as a system for discovery and retrieval of informa-

tion in open and dynamically changing environments. The brokering function provides

reasoning over the advertised syntax and the semantics. InfoSleuth aims to support co-

operation among several software agents for information discovery, where agents have

roles as core, resource or ontology agents. There is a distinguished broker agent encap-

sulating a matching function, which serves to bring agents requiring services together

with those offering. The matching operations are a mixture of syntactic, structural and

ontological proximity, inspiring the similar mechanisms developed in GENSS.

The GRAPPA [27] (Generic Request Architecture for Passive Provider Agents)

system allows multiple types of matchmaking mechanisms to be employed within

a system. It is based on receiving arbitrary matchmaking offers and requests, where

each offer and request consist of multiple criteria. Matching is achieved by applying

distance functions which compute the similarities between the individual dimensions

of an offer and a request. Using specialized aggregation functions, the similarities are

projected to a single value to constitute a match score. There is a clear link between

the ideas in GRAPPA and our final KNOOGLE architecture.

MathBroker [2] is a project at RISC-Linz with some elements in common with

those described here, including providing semantic descriptions of mathematical ser-

vices. It too uses MSDL, however it seems that most of the matchmaking is achieved

through traversing taxonomies, while actual understanding of the pre- and post-

conditions is still regarded as an open problem.

In the main, matchmaking research projects have tried to deliver generic results,

capable of being adapted subsequently for particular domains. However, the motivation

for many such projects has primarily been e-commerce (as a means to match buyers

with sellers, for instance), where it is hard to describe accurately the actual function

of a service, compared to the case of mathematical functions. In other cases, the work

has been driven by a specific language, notably KQML in some cases above, which

although powerful, does not enjoy widespread appeal.

In contrast, we believe that the approach we have outlined here, has attempted to

learn from this history, by putting as little as possible in the matchmaker/broker itself

and building on the power of web services and work-flow enactment, technologies

that at present appear to have good prospects for the medium-term, to provide a “late-

binding” of whatever functionality is desired, while also offering a degree of future-

proofing through the means to publish new matching techniques and rapidly deploy

new brokers using them.
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5 Conclusions

We have presented a short history of a selection of closely related projects that have

fortuitously led one into another to deliver a series of outputs that could be very ben-

eficial for the provision and up-take of computational science services. From Open-

Math, we obtain a general framework for mathematical semantic annotation of ser-

vices, (as well as a lingua franca for communication between mathematical services).

From MONET we get the confirmation that ontological reasoning can help in service

discovery. From GENSS, we see how mathematical reasoning over the ontological de-

scription of conditions and effects can make that discovery process more precise. And

finally in KNOOGLE, with the benefit of hindsight, we see better how to engineer an

architecture to deliver past and future matching technology using both mathematical

and a wide range of other techniques.
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was funded by the CEC (project IST-2001-34145); partners: NAG Ltd., Stilo Ltd., Uni-
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Q&A – Julian Padget 

Questioner: Ron Boisvert 
Could you provide some example scenarios in which your system might be 
used? For example, what types of services would this sit on top of? Who 
would be the users - people? Software agents? 

Julian Padget 
Both, although I think it will take some experience of use for scientists to be 
prepared to delegate some part of the decision-making to software agents.  
So initially, the clients will be human, but this is essentially a trust-building 
exercise in which people describe a problem and the system finds a service 
– or service work flow – that can solve the problem for them.  As people find 
those answers satisfactory – and various techniques can be used to have the 
system better meet users expectations – they may be increasingly willing to 
let software make choices for them. 

Questioner: Brian Ford 
What ideal are you working towards in terms of the systems you wish to 
develop? 

Julian Padget 
That they should be invisible!  Or perhaps to be more realistic they should 
not get in the way – be part of the solution, not as so often with computers, 
part of the problem.  So the ideal scenario is that a problem description be 
posed and all the appropriate software and the resources on which to run it 
are arranged to deliver the results where and when they are needed with 
only as much intervention from a human as they wish. 

Questioner: Brian Ford 
Tony Hoare always wished to replace computer software written in 
languages such as Algol68 and Fortran with logically, provable programs. In 
a similar manner do you wish to replace computation in "numerical analysis" 
with more rigorously based mathematical solutions? 

Julian Padget 

I don't see that as the main thrust.  I'm certainly not trying to supplant 
numerical analysis, rather trying to enhance its accessibility to the person 
with a problem – who doesn't necessarily know which is the right NAG (for 
instance) routine to use. 



Questioner: Mary Thomas 
Is this a possible usage scenario: running Mathematica, my matrix multiply is 
running locally and is too slow. I'd like to access a web service to help me 
find a faster service to run my job. 

Julian Padget 
Yes, in principle.  This goes back to the invisibility point I made earlier.  It 
would be great if the integration of software was at the level to enable 
something like that to happen.  There is still the question of whether you want 
that to happen automatically or under your control, but there are a lot more 
engineering problems to resolve before we get to that issue. 

Questioner: Ron Boisvert 
The EU funding for the OpenMath project has recently ended. They have 
produced some very good work, Is more needed to be done to support its 
use in systems like yours? Is the OpenMath technology sustainable? 

Julian Padget 
Yes, more does need to be done: there are not that many content 
dictionaries in place – we had to write more as the GENSS project 
progressed because there was nothing that allowed us to describe some 
services' functionality at the right level.  A case in point involved matrix 
operations and yes, we could have described the service semantics in terms 
of operations on individual matrix elements, but that was just too detailed: we 
needed to describe pre- and post-conditions in terms of whole matrix 
properties.  Fortunately we had someone who was experienced in writing 
OpenMath CDs working for us.  I'm not sure it would have been so easy 
otherwise.  So, I do have some concern about the sustainability of OpenMath 
as long as the experience of use in the wider community remains limited. 



Thursday AM Panel Discussion 

Panel
 Jay Alameda 
 Julian Padget 

Questioner: Richard Hanson 

Addressed to: Jay Alameda 
What are some examples of using Teragrid besides weather prediction? 

Jay Alameda 
The TeraGrid website, www.teragrid.org, has a continually updated set of 
success stores from scientists and engineers using the resources.  They 
span many directorates at NSF, from physics, to materials science, to biology 
and beyond. 

Addressed to: Jay Alameda 
How does a potential user get onto Teragrid? 

Jay Alameda 
This is well documented at www.teragrid.org; normally, one would use a 
development allocation (DAC) to get started (this is an easy submission); 
which is meant as a mechanism for preparation for a formal peer reviewed 
proposal. 

Comments: Jim Pool 
The Teragrid Web pages provide both descriptions of a broad array of 
applications and information about obtaining access to Teragrid resources. 

Comment: Craig Douglas 
Getting a starter account on the Teragrid is relatively simple: 

1. Pick a login / password 
2. Go to starter allocation request 
3. Title of project 
4. Abstract 
5. PI info (including grants) 
6. CV’s 
7. Submit 

Regular allocations require more information: 

1. Computational proposal 



2. Resource justification 
3. Code scaling 
4. $100,000 bank transfer (just kidding). 

Questioner: Mary Thomas 
Each of you represents a layer in a grid user interface: Jay = GUI, Julian = 
service protocol, Marc = grid computation. How do you see these layers 
changing the way I can use a tool such as Mathematica? 

Julian Padget 
It should change what you can do, but not necessarily how you do it: this is a 
good encapsulation of the vision where access to grid deployed 
mathematical services essentially becomes transparent, as if it were built into 
the source language, whether that is Mathematica, Maple or Matlab (+ 
others).  There is an incredible amount of work yet to be done to make 
functional service brokerage good enough that users might begin to trust it 
and likewise a lot of work to do to bring together familiar desktop packages 
and grid problem solving environments. 

Comment: Brian Ford 
The interface between the rigorous mathematical solution and practical 
solution through algorithms in a numerical library is a challenging one. An 
attempt at this is being made through the inclusion of a numerical algorithms 
library contents in a commercial symbolic solving package, and this has 
thrown-up the discontinuity between mathematical foundations of the 
symbolic approach and the more practical base in the algorithmic approach.  

There is some genuine mapping between the two, but the mathematical 
imprecision of definition in the algorithmic approach makes a continuity of 
solution challenging. But numerical algorithms do provide effective solutions 
in many application areas and the mathematical base is becoming stronger. 

Comment: Mary Thomas 
I can see someday running Matlab, and for a problem such as A+B*C, 
picking the right remote math service. This development environment could 
help move computational scientists off the mainframe so their codes are not 
tied to one host. Also, some code development time could be saved in 
compilation because the service is already compiled and optimized. 
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Abstract. The National Research Grid Initiative (NAREGI) program is trying 
to develop NAREGI-PSE, which is a part of the NAREGI middleware. It 
provides services for deploying and executing large scale scientific computer 
simulation software on a grid’s distributed and heterogeneous computer 
system. NAREGI-PSE has a PSE server that handles the applications residing 
on the distributed computers, and co-shares the application know-how, such as 
the source codes shared by the research community. This PSE server consists 
of an application pool and four PSE services.  Users access the distributed 
computers through the NAREGI portal and the NAREGI application 
environment, which includes the NAREGI-PSE.  The PSE server’s main 
purposes are: (1) simple and easy execution of a user’s application program in 
the grid environment, (2) simple and easy deployment of a user’s program 
onto the distributed computer environment, (3) simple and easy software plug-
in system into the application pool in the PSE server for software-reuse, and 
(4) application archive for a co-sharing application and it’s know-how among 
the research communities, which is achieved by grid virtual organization 
(VO). NAREGI middleware is designed and developed based on grid services 
according to OGSA/WSRF frameworks. 

1 Introduction 

Using network connections spread out over a wide area, the large-scale grid 
project to integrate high performance computer resources that will be geographically 
dispersed is promoted in many countries. For example, TeraGrid in the United States 
integrates resources including more than 102 teraflops of computing capability and 



more than 15 petabytes of online and archived data storage [1]. In Japan, the 
NAREGI program was instituted to research and develop high-performance, scalable 
grid middleware for a nationwide grid environment for scientific research. 

In a large-scale grid environment, it is quite difficult for users to know the 
detailed specifications of a distributed computer system they can use. Most grid users 
will not write programs. Instead, they will use grid-enabled applications that make 
use of grid resources. These applications may be widely distributed general purpose 
software or applications that are used only in specific fields. In advanced scientific 
research, the latter is very important. Such applications are probably developed by 
small groups of researchers, and most researchers only use it on the grid resources. 

We had to address the need for application developers and users in the field of 
advanced science research. Application users want to use applications with minimum 
knowledge of the applications and grid environment. Therefore, application 
developers should prepare information for the applications prior to release. 
NAREGI-PSE focuses on the functions to share applications, to deploy applications 
onto the grid, and to compose workflows using shared applications. 

NAREGI-PSE consists of the following subcomponents: 1) a retriever and the 
application information setup, 2) the application and application information 
registration, 3) the  compilation, test run, and comparison of the outputs with the 
desired results in the register phase in order to check if the program can be correctly 
run on the target computer systems, 4) an application search component to find the 
required programs from the application pool, 5) the application deployment, 6) the 
application and workflow search and registration in the application pool, and 7) a 
search for the appropriate computers based on the application information that is 
retrieved.  This article at first briefly focuses on the NAREGI program itself, but 
later mostly on the NAREGI-PSE activities, including the design concepts, 
configuration, functions, and user scenario. 

2 NAREGI Program 

 The NAREGI project is a five-year project that was instituted in fiscal 2003 in 
Japan. In 2006, the NAREGI project restarted as a new five-year project called the 
“NAREGI program” under the Development and Application of Advanced High-
performance Supercomputer Project initiated by the Ministry of Education, Culture, 
Sports, Science and Technology (MEXT). NAREGI aims to research and develop 
high–performance, scalable grid middleware for the national scientific computational 
infrastructure. Such middleware will help facilitate computing centers within Japan 
as well as worldwide in constructing a large-scale scientific “research grid” for all 
areas of science and engineering, to construct a “National Research Grid” [2][3]. 

As a representative application area, NAREGI has adopted nanoscience, and 
large-scale nanoscience simulations have been performed. We assume that the future 
computational environment for scientific research will have a computational scale 
well beyond 100 teraflops and tens of thousands of users online. As such, the grid-
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enabled nanoscience applications associated with NAREGI will serve as the 
hallmarks of the project to evaluate the effectiveness of the grid middleware that we 
will develop. The experimental deployment of these applications will be significant 
in terms of the scale of the computational requirements. It will also provide a virtual 
distributed computing environment with a large number of users in nanoscience and 
nanotechnology, and from the areas of academia as well as industry.  

The middleware R&D work is being conducted at the newly established Center 
for Grid Research and Development, hosted by the National Institute of Informatics 
(NII) in Tokyo, Japan. The grid-enabled nanoscience application work is under the 
auspices of the Center for Applications Research and Development, hosted by the 
Institute for Molecular Science (IMS) in Okazaki, Japan. These two centers are 
collaborating to establish and operate a dedicated NAREGI test bed with Japan’s 
SuperSINET as the underlying network infrastructure. The test bed will facilitate 
nearly 18 teraflops of computing power distributed over nearly 3000 processors. 
Both the developed grid middleware and the grid-enabled nanoscience applications 
will be under scrutiny and expected to achieve a performance over a predetermined 
scale, as well as serving to test the stability and manageability of future grids hosted 
by the two centers and utilized by various application domains.  

3 NAREGI middleware framework 

The grid middleware R&D work consists of six research and development groups, 
as shown in Figure 1, which are referred to as “Work Packages” (WPs). WP-1 
focuses on the lower- and middle-tier middleware for resource management, such as 
a Super Scheduler, GridVM (providing local resource controllers), and information 
services on the grid. WP-2 covers the basic parallel programming tools for the grid, 
mainly consisting of two key middleware pieces, GridRPC (for task-parallel 
applications) and GridMPI (for data-parallel applications). WP-3 works on the grid 
tools for end users, including the grid workflow, the problem solving environment 
(GridPSE), and the grid visualization tools. WP-4 deals with the data grid for the 
federation of databases spread worldwide on the grid environment, while WP-5 
investigates networking, security, and user management issues for high-performance 
grid infrastructures, such as real-time traffic measurements, QoS provisioning, and 
optimal routing for VOs and robust file and data transfer protocols. Finally, WP-6 
acts as a liaison with the Center for Applications Research and Development, 
developing application-specific middleware components in order to grid-enable 
large-scale nanoscience applications, including those that require the coupling of 
multiple applications on the grid.  

3.1 Lower- and middle-tier middleware (WP-1) 

The requirements for a scheduler that can handle the widely distributed 
computing resources of a grid environment include a high level of scalability, fault 
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tolerance, and collaborative scheduling functions coordinating between multiple 
sites. This area of research and development covers such components as a “Super 
Scheduler”, which can manage all scheduling over a wide area, a broker that can 
secure the computational resources meeting the user requirements, such as the 
number of CPUs, urgency, and cost, a scheduler for the cluster environment, 
middleware for computational resources, networks, and grids, and tools for 
monitoring information and managing system configurations for the various 
applications [4]. 

1) Super Scheduler: This is a meta-scheduling system for the large-scale control 
and management of a wide variety of resources shared by different organizations in 
the grid environment. The system will be aimed primarily at identifying resources 
that can meet requests from batch job users and allocate these resources to specific 
jobs. 

2) GridVM (local resource controllers): This is a new grid middleware that deploys 
a virtual layer of computing resources in the grid environment and facilitates 
resource utilization, resource protection, and fault tolerance. 

3) Information services: A secure, scalable resource information management 
service will be established for the purpose of running a large-scale, multi-discipline 
grid computing environment. 

High throughput network for 
research and education (SuperSINET)

OGSA WSRF/WSN(GT4)OGSA WSRF/WSN(GT4)

WP6: Grid-enabled Nano-applications

WP2: Grid 
Programming  

-Grid RPC
-Grid MPI

WP1: Grid VM

WP3:  Grid PSEWP3: Grid Visualization

WP1: Distributed
Information Service

WP3: Grid Workflow

WP1: Super Scheduler

WP5: High-Performance & Secure Grid Networking

Computing Resources

NII IMS Research 
Organizations Universities

WP4:
Data Grid
Environment 

High throughput network for 
research and education (SuperSINET)

OGSA WSRF/WSN(GT4)OGSA WSRF/WSN(GT4)

WP6: Grid-enabled Nano-applications

WP2: Grid 
Programming  

-Grid RPC
-Grid MPI

WP1: Grid VM

WP3:  Grid PSEWP3: Grid Visualization

WP1: Distributed
Information Service

WP3: Grid Workflow

WP1: Super Scheduler

WP5: High-Performance & Secure Grid Networking

Computing Resources

NII IMS Research 
Organizations Universities

WP4:
Data Grid
Environment 

378            Grid-Based Problem Solving Environments



Fig. 1. NAREGI grid middleware stack  

3.3 Grid programming environment (WP-3) 

For this grid environment to be widely accepted by researchers, who are the end 
users, the grid software environment must be easy for them to use. To this end, 
research and development will be conducted in areas, such as the design of a 
workflow description language for controlling jobs on the grid, grid workflow tools 
for executing jobs in cooperation with the resource management mechanism, 
software tools for visualizing massive computational results distributed over the grid 
remotely with a light network load, and GridPSE to act as a software environment 
that can easily enable the execution, linkage, and coordination of the applications, 
computational modules, data, and other resources used by researchers over a wide 
area.
1) Grid workflow: A visual tool for seamlessly preparing, submitting, and querying 

distributed jobs running on remote computing resources. It explicitly handles 
programs and data, and is independent of the specific Grid middleware. Complex 
workflow descriptions, such as loops and conditional branches, are supported for 
nanoscience applications. Graphically described workflow jobs are converted to an 
enhanced workflow language based on Grid Services Flow Language (GSFL), which 
may be a common interface with other systems such as the PSE. 
2) GridPSE: A Problem Solving Environment (PSE) for a scientific grid that 

facilitates the development and execution of application programs in nanoscience 
technology applications and other areas, without detailed computer-related 
knowledge or skills on the grid from the user's side. NAREGI-PSE is the software 
product name of this sub-project and the details for it are described in Section 4.  
3) Grid visualization: A real-time, post-processing visualization system for 

nanosimulation, capable of reducing network loads that may interfere with smooth 
visualization, through flexible distribution of visualization tasks in the grid 
environment. This system is also characterized by having functions for large-scale 
parallel visualization, visualization for coupled simulation, and collaboration. 

3.4 Data Grid environment (WP-4) 

The research subjects are data grid fundamental technology, search control 
technology for a database federation, and metadata-based information integration for 
heterogeneous data resources. These technologies are under research and 
development for the federation of numerous databases spread throughout the Internet 
on the grid environment. The technologies include the Data Grid fundamental 
technology for managing and querying data resources using the WSRF-based OGSA 
infrastructure, search control technology (preventing combinatorial explosions 
caused by searching across many databases), and information integration technology 

Grid-Based Problem Solving Environments            379



with metadata that mediates heterogeneous data resources. Their developments are 
carried out in cooperation with the other grid environment. 

3.5 High-performance and secure grid networking (WP-5) 

This section discusses the research and development of high-performance and 
secure grid networking in the NAREGI project. In the last decade, network 
infrastructures have become a very complicated combination of different sub-
infrastructures, with wide ranges of throughput, delay, error rate, and jitter supported 
by different technologies, such as Multi-Protocol Label Switching (MPLS), 
differentiated services (diffserv), and optical networking. Because of the nature of 
distributed computing, the performance of grid computing may be considerably 
degraded by certain conditions of underlying networks, such as poor bandwidth, long 
delay, or temporal failures. Thus, we should be aware of the network resources as 
well as the computing resources [5]. The goal of the project’s high-performance and 
secure grid networking subgroup is to develop a reliable, easy-to-use, high–
performance, secure networking infrastructure for grid computing by taking into 
consideration the requirements of various applications; that is, the goal is to develop 
a high-performance “managed network”. For this purpose, we have set up the 
following three subgroups: 

1)  Network function infrastructure: In developing high-performance networks, 
over-provisioning and strict static reservation of the network resources are potential 
solutions, but neither are scalable nor cost-effective. Therefore, our goal for the 
network function infrastructure is to develop a system of measurement, management, 
and control for adaptively using and assigning network resources in order to avoid 
resource conflicts and cost-effectively maintain the network quality for grid 
computing.  

2). Communication protocol infrastructure: The currently deployed version of TCP 
cannot detect network congestion until a packet loss occurs, so that many packets 
will be discarded. As either the network bandwidth or the router buffer size increases, 
the number of lost packets grows, significantly degrading the TCP throughput. 
Therefore, our goal for the communication protocol infrastructure is to develop a 
communication protocol optimized for grid computing and a method of evaluating 
the network performance. 

3). Grid security infrastructure: Security problems in grid computing may occur in 
accessing the distributed resources over the network. Our goals for the grid security 
infrastructure are to develop a security model for grid computing based on PKI and 
to implement authentication and VO management across multiple organizations [6]. 

3.6 Grid-Enabled Nano Applications (WP-6) 

WP6 is developing application-specific middleware components to grid-enable 
large-scale nanoscience applications, including those that require coupling of 
multiple applications on the grid. One example of such applications is multi-scale 
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simulation, where each application component utilizes different mathematical and 
physical modeling approaches and cooperates on spatially or temporally different 
calculations. To advance such multi-scale applications, and more generally, multiple 
applications, users have wasted a lot of effort in developing custom codes and 
decomposing original codes for semantic-level communication between 
heterogeneous scientific application components. 

3.7 Services Architecture of NAREGI Middleware  

NAREGI middleware is designed and developed based on OGSA/WSRF. WSRF is 
a messaging model and provides the ability to model state-full resources in a 
framework of web services. WSRF defines the conventions for managing “state”, so 
that applications can reliably share dynamically changing information. Major 
NAREGI middleware components are developed as grid services using GT4 [7] 
based on WSRF. The NAREGI middleware services architecture is shown in Figure 
2. Each component works as an independent service and communicates with the 
others according to the grid service access protocol. 

The top layer is the services for the end user, and this layer is usually provided as a 
portal for corresponding to the research community realized by VO. The second 
layer is the gateway services, and this layer provides several services building 
science gateway in TeraGrid. The third layer is the core grid services, and this layer 
provides core grid services, such as resource management, security services, and data 
services. The fourth and fifth layers are the physical resource infrastructure, which 
includes the network resources. NAREGI-PSE tightly co-works with workflow 
services and other layer services, such as information service and Super Scheduler, 
and is located in the gateway services layer.     
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Fig. 2.  NAREGI middleware service architecture  

The workflow services are a visual tool for seamlessly preparing and submitting 
distributed jobs running on remote computing resources. It handles programs and 
data explicitly, and is independent of the specific Grid middleware. Complex 
workflow descriptions, such as loops and conditional branches, are supported for 
nanoscience applications. Graphically described workflow jobs are converted to an 
enhanced workflow language based on a workflow modeling language (WFML), 
which is a common interface with other systems, such as the PSE. The user imports 
the application information from an application contents service (ACS) in NAREGI-
PSE and builds the application scenario using that application information on the 
workflow graphical user interface (GUI). 

The information service contains various kinds of information; CPU, memory, 
OS, job queue, account, usage record, etc. These contents are aggregated and 
hierarchically accumulated in relational databases. A common information model 
(CIM) based schema is used to describe the resources in the computing grid [8]. The 
access control information for the applications in VO is supplied by the information 
service.

The Super Scheduler is a scheduling system for large-scale control and 
management of a wide variety of resources shared by different organizations in the 
grid environment. The system will be aimed primarily at identifying resources that 
can meet requests from batch job users and allocating these resources to specific jobs.  

4 NAREGI-PSE 

NAREGI-PSE is a part of the results of a grid application environment (WP3) 
group activity. NAREGI-PSE facilitates the deployment and execution of application 
programs in nanoscience technology applications and other areas, without detailed 
computer-related knowledge or skills for the grid on the user's side. [9-18] 

4.1 NAREGI-PSE Design Concept 

The design and development concepts of NAREGI-PSE are as follows:  
 (1) Provide a framework to distributed users’ applications on a grid  

Users can register, deploy, and retrieve applications by using NAREGI-
PSE for real-time collaborations. 
Application developers distribute and share their applications with 
research community members. 
Application users find it easy to use the latest research applications 
without a compilation or test run. 

(2) Focus on a legacy application 

382            Grid-Based Problem Solving Environments



Deploy application binaries for specific target machines. 
Compile source programs, if needed. 

(3) Design and development policy 
Simple and easy execution of users’ application programs on distributed 
computers. 
Simple and easy deployment of users’ programs onto the distributed 
computer environment. 
Simple and easy software plug-in into the application pool in the PSE 
server to provide a software-reuse environment. In this mechanism the 
PSE server supports users to reuse previous software for their own 
purposes. 
A problem solving scenario written by the workflow stored in the 
application pool in the same way as for a single application. End users 
easily reuse the stored workflows developed by themselves or by others 
for a new problem solving scenario. 

4.2 NAREGI-PSE Configuration 

The configuration of NAREGI-PSE is shown in Figure 3. NAREGI-PSE serves 
four WSRF-based grid services and a client GUI. 

Fig. 3. NAREGI-PSE System Configuration  
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The NAREGI-PSE client GUI delivers a user interface to users, who work on 
distributed computer systems. The deployment service provides the function where 
they can transfer files of an application to remote computing resources, and execute a 
“post-procedure” to configure and/or examine a deployment. The compilation 
service provides the service that transfers the source files of an application to remote 
computing resources, and executes a script compilation, then collects and stores the 
binary files to ACS if the script compilation succeeds.  

The application pool is implemented by using the application repository (AR) 
interface and application archive (AA) format from the ACS specifications. In 
addition, the application information utilizes OGSA-DAI and PostgreSQL. 

4.3 Application pool 

The application pool consists of two databases, the application information 
database and the ACS database as shown Figure 4. The application information 
database contains the meta-information related to the application, including the 
resource requirements (JSDL), and the ACS database contains the application 
entities, including the source codes.  

Fig. 4. Structure of Application Pool 

(1) Application Contents Service (ACS) 
ACS is a set of requirements and specifications that is being worked on by the 

Application Contents Service Working Group (ACS-WG) [19] within the Global 
Grid Forum (GGF) [20], which is an international standards and community body 
focusing on Grid technologies. The ACS specification documents define a 
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standardized way to manage and handle a grid application as a deployable logical 
unit, so as to maintain consistency, reduce management overhead, and enable 
automation throughout the lifetime of an application.  

The ACS architecture is described as follows. The ACS provides a repository for 
grid applications. The application producer creates application archive (AA) 
instances accompanied with the meta-information describing the contents. The AA is 
a logical bundle of files that is used for provisioning and executing a task in a Grid 
system. Such information may include, but is not limited to, the application 
executable code, configuration data necessary for initial deployment of the 
application, and the deployment descriptor documents. 

An AA consists of an Application Archive Descriptor (AAD) and zero or more 
application contents. The ACS repository will parse and make use of the AAD. The 
AAD may contain information, such as the identification, access constraint policy, 
and information associated with the structure, of the AA contents. In order to achieve 
application contents retrieval, the ACS repository needs to know the meta-
information of the application content files, such as the names and types of the files. 
They should be provided by the Application Provider and be included in the AAD. 

(2) Application Archive  
The Application Archive of a single application contains the following materials:  

Source files (optional) 
An executable file (required, but it may be generated by a compilation 
procedure.) 
A compilation procedure (optional) 
A deployment procedure (required) 
Files required for executing the application (optional) 

An application stored in the Application Repository will be a part of a complex 
application, using the grid workflow. A workflow consists of some applications that 
can be registered in NAREGI-PSE, too. The Application Archive of a workflow 
contains a workflow file described in WSML. The resource requirements of 
applications in NAREGI-PSE are described based on the Job Submission 
Description Language (JSDL). The application with a different resource requirement 
is stored as another application archive, as shown in Figure 5.
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Fig. 5. Structure of Application Archives 

4.4 Compilation and Deployment Services 

The following two services are the key services in NAREGI-PSE.  
(1) The compilation service 
The compilation service provides the remote compilation function, according to 

the following procedures. 
Retrieve and select an application to compile. 
Display the candidate set of the computing resources from the resource 
requirements of the application. 
Select (a) computing resource(s) for the compilation. 
Transfer files to the selected computing resources and execute the 
compilation. 
If the compilation succeeds, the resulting files are stored in the 
application repository. 

(2) The deployment service 
The deployment service provides the deployment function, according to the 

following procedures. 
Retrieve and select a application to deploy. 
Display the candidate set of computing resources from the resource 
requirement of the application. 
Select (a) computing resource(s) for the deployment. 
Transfer files to the selected computing resources and execute the “post-
procedure” 
If the post-procedure succeeds, the deployment information is stored in 
NAREGI-information service (NAREGI-IS). 

4.5 NAREGI-PSE Using Scenario 

NAREGI-PSE assumes two types of users, one is the application developer and 
the other is the application user. The application user just uses applications that were 
developed by other researchers or by his/herself. 

(1) Application developer 
In Figure 6, an application developer registers his/her application with the PSE 

server and tells that the application deploys to the execution server. This information 
is put into NAREGI-IS. Developed applications are deployed and registered to the 
application pool in the following way.  
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Fig. 6. NAREGI-PSE Usage Scenario (I) 
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o Select an application and then select a server for the compilation 
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Deployment 
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Figure 7 shows the application user executing the registered application in 
NAREGI-PSE. The application executing processes are as follows.  

Application Retrieval: 
o Retrieve the application using GUI 
o Import the information from the selected application (system 

requirements - JSDL, etc.) from the application pool to make a 
workflow icon of the Grid Workflow 

Execution: 
o Compose a workflow job from the registered workflow icon. 
o The PSE submits a job to the Super Scheduler. 
o The Super Scheduler dispatches the resources referring the 

resource information provided by Information Service. 

Fig. 7. NAREGI-PSE Usage Scenario (II) 

5 Conclusions 

The NAREGI program is now in the middle of its fourth year. The beta version 
of NAREGI middleware was released in May 2006. The program is now fully 
engaged in software development for delivering the final version of a NAREGI-
integrated (NAREGI V1.0) Grid middleware at the end of the next fiscal year. The 
research projects under the NAREGI program have made considerable progress in 
the development the a prototype software, and some of them have already produced 
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preliminary results, including GridRPC, GridMPI, and NAREGI-Certification 
Authority (NAREGI-CA). NAREGI-PSE also has developed a beta version and 
delivered it to IMS and several other user sites. The role and viability of PSE in the 
distributed computer system have been demonstrated. The PSE server provides a 
smooth and flexible environment in the HPC on distributed computers, and 
encapsulates the complex information of distributed systems, so that on the PSE 
server users can perform HPC as if distributed computers are under the users’ hands. 
The PSE server may open a new environment for the HPC world. 

 Finally, we regard Grid as one of the fundamental technologies of the IT 
infrastructure in the 21st century, and expect that the results of the NAREGI program 
will greatly advance research and development in the scientific fields, improve 
Japan’s international competitiveness, and have a major economic impact. 
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Q&A – Hitohide Usami 

Questioner: Mladen Vouk 

Hitohide Usami 
Now over 50 users had downloaded the NAREGI Grid Middleware Version 
Beta1.0, but I guess only few users finished install and setup. 

Questioner: Mladen Vouk 

Hitohide Usami 
We are now discussing with EGEE group about the way of the 
interoperability. We are planning demonstrations of interoperability between 
NAREGI and EGEE at the next SC2006. We belong to GGF GIN(Grid 
Interoperation / Interoperability Now)-WG, and discuss interoperability from 
the viewpoints of standardization.  

Questioner: Bill Gropp 
Did you find that the original design of NAREGI into six areas and the 
interfaces between them needed to be changed as you developed the Grid 
application environment? 

Hitohide Usami 
The original design of NAREGI (prototype system) was developed based on 
UNICORE, but the current version is based on OGSA/WSRF. So, the 
interfaces between each component are drastically changed. 

Questioner: Bill Gropp 
Do you have measures for the success of the components of the projects, 
such as performance or scalability? 

Hitohide Usami 
We are measuring performance, scalability, reliability, stability, robustness, 
etc as the success of the middleware. 

Questioner: Bill Appelbe 
What "off the shelf" or existing software are you using, e.g., scheduling? 

Hitohide Usami 
NAREGI Grid Middleware Version Beta1.0 using PBSpro (for Linux machine) 
or LoadLeveler (for AIX machine) as”off the shelf" software. 



Questioner: Brian Ford 
Japan suffers earthquakes from time to time. Are there special disaster 
recovery demands in the design of NAREGI to overcome likely problems? 

Hitohide Usami 
NAREGI Grid Middleware Version Beta1.0 does not yet support special 
disaster recovery functions. These functions are closely depended on the 
local scheduling "out of NAREGI" software, we are now discussing about 
these functions including application level checkpoint restart function. 



Grid Enabling of Nano-Science

Applications in NAREGI

Mutsumi Aoyagi
Kyushu University

Abstract. Grid-Enabling Team(WP6) in National Research Grid
Initiative(NAREGI)1 is developing application-specific middleware
components to grid-enable large-scale nano-science applications,
Chemistry applications, including those that require coupling of
multiple applications on the grid. One example of such applications is
multi-scale and/or multi-physics simulation, where each application
component utilizes mathematically and physically different modeling
and cooperates on spatially or temporally different calculations. To
advance such multi-scale and/or multi-physics applications, users have
made an every kind of efforts in developing custom codes and
decomposing original codes for semantic-level communication
between heterogeneous scientific application components. To facilitate
easier usage and minimize customization processes of original user
programs which may be legacy codes, we have been developing a
middleware system, called a _Mediator_ on top of the GridMPI2, that
provides high-level transparency in automatically transferring and
transforming data between heterogeneous application components. The
Mediator focuses on a data-handling specification that correlates
different discrete points in finite difference method (FDM), finite
element method (FEM), or particle simulations such as Molecular
Dynamics(MD) in the unified way. It supports a variety of techniques
for semantically transforming the values associated with the correlated
points, e.g., in-sphere, first nearest neighbors, and nearest points. The
Mediator provides three types of Application Programming Interface
(API), which (1) manage a task identification and construct an
association between Mediator and application processes in parallel
programming style such as Single Program Multiple Data and Master-
Worker, (2) register different levels of discrete points, search the
correlated discrete points, and determine processes and (3) transfer
messages incorporating the extraction and the transformation of the
values associated with the correlated points. The prototype system has
been applied to multi-scale simulations in nano-science, in which



RISM (Reference Site Model) and FMO (Fragment Molecular Orbital)
are coupled to analyze an entire electric structure of large-scale
molecules immersed in infinite solvent. RISM is employed to analyze
the pair correlation functions of molecular sites between a solvent and
a solute, while FMO is used to calculate the total electronic energy and
the molecular structure of the solute. The interoperability between
nano-science applications on the grid might require the functionality to
reuse application codes and data from one application domain to
another as well as to retrieve and transport data. In the execution step
of nano-applications, we have to focus on providing the grid-ready
environment which could easily enable the execution, linkage, and
coordination of the application modules and the data. To achieve this
end, Grid Application Environment Team(WP3) in NAREGI has been
developing Workflow Tool, GridPSE and Grid Visualization Tools in
cooperation with the resource management mechanism. We expect that
these middlewares and tools could be a key component for enabling
gateway developers to manage and provide applications on the
computational resources for execution and for analyzing linked data
sets from related domains, such as Monte Carlo calculations, molecular
dynamics, electronic structure studies, and further cross-disciplinary
data mining.
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Q&A – Mutsumi Aoyagi 

Questioner: Brian Ford 
Congratulations on your computation of a very large molecule in this way! 
Have you found that the computing method you have chosen confirms and 
supports your chemical intuitions? As the molecular groups within the 
ensemble rotate, do you anticipate changing the strategy of your 
computation? 

Mutsumi Aoyagi 
Thank you very much. I found that the fragment Molecular Orbital (FMO) 
method works very well for the decomposition on simple chemical bonds like 
a single bond, but for molecules having multiple-bonds or delocalized 
electrons, we must carefully apply the FMO method to such systems.   Yes, 
we realize that different decomposition schemes have to be applied 
according to large changes of molecular structure, such as a rotation of 
molecular groups. 

Questioner: Mladen Vouk 
In your multi-scale and/or multi-physics simulation example, the large 
molecule is immersed in water. What happens to the possible hydrogen 
bonding between the molecule and "thin" water layer around it? Is it 
computed by the FMO code or by the water "integral" code? 

Mutsumi Aoyagi 
Yes, hydrogen bonding of surrounding water molecules with solute, such as 
large protein molecule, plays an important role in solvation dynamics of 
protein. So the surrounding water molecules located at the 1st layer are 
treated as the part of solute. In other word, hydrated protein with thin water is 
calculated by FMO, and surrounding water molecules located at 2nd layer 
are treated through statistical method in our multi-scale and/or multi-physics 
simulation. 

Questioner: Mladen Vouk 
In your slides which show decomposition of the FMO code into modules, 
does your grid system automatically adapt the code (through automatic 
recompilation) if mapping onto computing resources offers a platform for 
which you may not have precompiled/optimized executables? 

Mutsumi Aoyagi 
Our grid system, NAREGI-PSE, does not have automatic recompilation 
functionalities. Instead, since the compilation conditions required for each 
module are registered on the application information service, NAREGI-PSE 
can deploy our modules onto the appropriate computing resources 
automatically.



Questioner: Bill Applebe 
Is the water molecule display purely for one time-step? 

Mutsumi Aoyagi 
Yes, the calculated results correspond only to one time-step, and in order to 
investigate the dynamical aspect of solvated molecule, including the analysis 
of free energy surface, we need to iteratively solve the RISM equation for 
solvent according to the structural changes of solute. 



Grid Architecture for Scientitic

Communities

Sebastien Goasguen
Purdue University

Abstract. Sharing of resources among virtual organizations (VO)
has been termed the grid problem. At the heart of this problem is
development and acceptance of a protocol to share, discover and
compose services. However significant challenges arise in monitoring,
accounting and securing any grid infrastucture. VOs of any size should
be able to build their own cyberinfrastructure (CI) by discovering and
then composing services to build higher level capabilities that they
need. These community's CI could be dynamically expandable,
persistent and migratable while using resources across adminstrative
domains. In this paper we will present several VO based grid
architecture and focuse on the nanotechnology community CI called
the nanoHUB. The nanoHUB uses virtualization technologies to
isolate the infrastructure from the local administrative domain. Virtual
machine migration and virtual networking techniques allow the
infrastructure to be dynamic and adapt to the underlying physical
system. Moreover by using virtual machine the users are provided with
a sand box that serve as a development platform for their software an
as a entry point to physical grids. Finally, we will cover the security
issues in VO access to multiple grid infrastructure and present our
work towards using shibboleth witin the nanoHUB.



Q&A – Sebastien Goasguen 

Questioner: Bill Applebe 
Is the nanoHUB installed elsewhere, or is there a plan to distribute it more 
widely or make it compatible with other grid hubs? 

Sebastien Goasguen 
Currently the nanoHUB infrastructure is centralized and operated from 
Purdue. Remote resources on TeraGrid and Open Science Grid are used but 
the virtual infrastructure is based at Purdue. We have started work towards a 
much more distributed infrastructure using some virtual networking 
technologies. Resources at the University of Florida are being used to test 
migration of virtual machines between Purdue and UF. We also plan to 
package the middleware to make it available to other communities. 

Questioner: Mladen Vouk 
What are the failover (fault-tolerance) provisions in your system? 

VMWare seems to have nicer failover properties (automatic migration to 
backup servers). Is there are reason you chose to use XEN? 

NC State has a system that is in many ways similar to what you have. Ours 
is called Virtual Computing Laboratory and uses RDP as the remote desktop 
access protocol (and within web window display). Is there a reason you 
chose VNC? In my experience VNC sometimes has difficulties with graphics. 

Sebastien Goasguen 
The In-VIGO middleware has been deployed at Purdue and a reference 
implementation is used in Production. This implementation has been 
enhanced with monitoring tools such that user sessions, file system, 
connection to back-ends, VNC servers are being checked regularly and 
restarted if they fail. This system also allows us to stress test the middleware 
and simulate high user load. 

We currently do not have automatic migration in our infrastructure. Migration 
is being used in our virtual cluster to adapt to the load and run time 
characteristics of the applications. When the project started we purchased 
two licenses of the Vmware GSX server. We ended up transitioning to the 
open source Xen system which is a patch to the Linux kernel. It offers less 
overhead and through experience has shown to be more reliable. Now that 
Vmware has released a free version of their player and their server we are 
starting to re-introduce some Vmware technologies, especially the player 
which allows us to give a "nanohub appliance" to our users. 

So far VNC has seemed able to meet our needs. We are aware that there 
maybe some networking issues when applications have heavy graphics. 



Questioner: Ron Boisvert 
There are many simulation applications available to users of the nanoHUB. 
Presumably, these are contributed by the research community. On average, 
how much work is required to take one of these apps and make it 
presentable/reliable for use in the nanoHUB, and who does this work? 

Sebastien Goasguen 
Anyone can contribute an application to the nanoHUB. A project is created in 
our subversion repository and the contributor can upload his or her 
applications. The Network for Computational Nanotechnology has developed 
its own graphical user interface builder called Rappture, which can be used 
easily to create a nice GUI. An undergraduate can create the interface in a 
couple of hours. More complex applications can take weeks, but mostly due 
to a review process that has several iterations before an application is made 
publicly available. However the strength of the middleware is that any 
application can be made available, so technically it takes as much time as to 
get the source and compile the code. 

Questioner: Xiaoge Wang 
Will and how does this middleware affect the way that scientists work? 

Sebastien Goasguen 
Users of the applications can access them through their browser without 
installing or compiling any software components. More advanced users who 
develop applications can benefit from a standard development environment 
available through the workspaces. If developers wish to adopt Rappture to 
create their applications interface they will need to learn the Rappture API 
that they will use in their code. If we consider the access to remote resources 
outside the nanoHUB, the scientists need only know how to use condor and 
pbs. They actually don't have to learn too many new things from their 
standard mode of operation. 
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Abstract Scientific research applications, or codes, are notoriously difficult to 
develop, use, and maintain.  This is often because scientific software is written 
from scratch in traditional programming languages such as C and Fortran, by 
scientists rather than expert programmers.  By contrast, modern commercial 
applications software is generally written using toolkits and software 
frameworks that allow new applications to be rapidly assembled from existing 
component libraries.  In recent years, scientific software frameworks have 
started to appear, both for grid-enabling existing applications and for 
developing applications from scratch.  This paper compares and contrasts 
existing scientific frameworks and extrapolates existing trends. 

Introduction 

A software framework is an organized collection of reusable software 
components that is used to implement software applications. Software frameworks 
are now in widespread use in commercial software development, and software 
development using such frameworks is referred to as Component Based Software 
Development or Engineering [1].  The two most widely used commercial software 
frameworks are SUN’s Java J2EE, and Microsoft’s .NET. The J2EE and .NET 
frameworks consist of many thousands of classes that provide the basic infrastructure 
necessary to implement GUIs, web sites and web services, and relational database 
interfaces.  Frameworks provide significant software productivity improvement 
through reuse of their components [2]. 



The notion of grid computing [3] has several interpretations, ranging from a 
rather restricted interpretation (an application run remotely), to a much more 
expansive view of an application that is in use by a distributed community that uses 
the grid to share and exchange models (developed using the application), data, and 
research outcomes.  In this paper, we adopt the more expansive view of a grid-based 
application, in line with the evolution and growth of the grid and communities that 
use it. 

So the key aim of software frameworks, as applied to scientific grid-based 
applications, is to reduce the development, maintenance, and support time for 
scientific applications and models, comparable to that achievable for commercial 
software development by reuse.  Realistically, widespread large productivity 
increases for scientific software are unlikely for a variety of reasons, not the least of 
which is the limited “market” for specialized scientific applications and the 
corresponding lack of resources.  However, it is arguable that the progress in 
scientific software frameworks has been significant over the past few years, with 
both successes and failures, which point to emerging opportunities and likely 
evolution. 

The definition of software frameworks adopted above (or equivalent definitions 
such as in www.wikipedia.org) is inherently subjective and qualitative – it provides 
no clear measure of what is, and is not, a framework.  However, the definition of 
frameworks adopted above does leads to several key characteristics of software 
frameworks that can be used to assess, or quantify, the extent to which a software 
product, library, or toolkit, is a framework:  
1. Extensibility – to what extent can the framework be extended or adapted, by 

mechanisms that include specialization, introduction of new components, and 
modification of existing components?  Inevitably, extensibility implies object-
orientation – in the architecture and implementation of the framework. 

2. Integration – to what extent can the components of the framework be combined 
or interoperate?   Is there an underlying architecture that facilitates assembly of 
components? 

3. Scope – what fraction of an application can be implemented by applying 
framework components?  This fraction is obviously dependent upon the 
application and the extent to which customization or adaptation is needed.  A 
broad framework scope provides for significantly reduced development time, but 
comes at a corresponding cost and complexity of the framework. 

Frameworks for Grid Computing 

One view of grid computing is that it will eliminate or reduce the need for 
traditional “command line” scientific computing – where a user logs in to a remote 
or local computer, typically running Linux, then runs the scientific application as a 
batch job, supplying it with whatever files and command arguments are required.  
Such command-line computing has been the standard model for using scientific 
software since the 1960’s.  Command-line computing often requires considerable 
application expertise to configure and run, as every application has its own input and 
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output formats, files, and constraints.  In addition, there are typically suites of 
applications or programs that need to be run to create model and post-process the 
output (e.g., to create a visualization or plots).  When used repetitively, such a suite 
of applications and programs is referred to as a workflow[4]

Grid computing can simplify scientific computing by replacing the command line 
model by a web portal, that uses web pages to provide a standardize www interface 
for scientific data and computations – setting up, running, archiving, and post-
processing output of scientific applications running on remote computing systems 
(e.g., blast searches on NCBI’s website [5]).  The goal of web portals is to provide a 
scientific computing www environment that is as convenient and simple as that for 
www applications such as online news, encyclopedias, or travel. 

For well-developed and standardized scientific applications, such as blast, web 
portals can be highly successful.  However, it is often very labor intensive to create 
and maintain effective customized web portals for less widely used scientific 
applications (in spite of the availability of robust toolkits such as gridsphere for 
creating web portals).  Thus there are two key limitations of the strategy of replacing 
command line scientific computing with web portals: 
1. Individual scientists and applications often have their own nuances and 

techniques for using scientific applications, based on their research objectives 
and peculiarities of the application – a “one size fits all” approach for scientific 
computing is not feasible.  The strength of command-line computing is its 
flexibility, albeit at a cost in complexity.  Conversely, the weakness of portal-
based computing is that it is limited by whatever workflows and input are built 
into the portal to support the user community. 

2. The other limitation of portals is that they do not provide for customization of the 
scientific application – beyond what customization was provided for by the 
implementer of the scientific application.  Almost invariably, the implementer of 
the portal is not the same as the implementer of the application (as portals and 
scientific applications use different skills and programming technology).  In 
effect, a portal “shrink wraps” an application, but does not readily provide for 
customization of the scientific application inside of the shrink-wrapping (such as 
changing a solver or a constitutive law). 

A partial solution to the lack of flexibility in portals, and the lack of 
standardization of inputs to scientific applications is superstructure frameworks.  A 
superstructure framework is simply a framework that provides components to 
replace the “top-level” of an application, and/or tie together applications or 
application components into a workflow.  Notable examples of such superstructure 
frameworks include: 

Kepler [4] – for workflows 
Pyre [6] – a Python toolkit for staging, monitoring, and visualization scientific 
applications.   

While superstructure frameworks do provide more capability for customization 
of applications and their interfaces than web portals, they still do not facilitate the 
internal customization of an application.  Superstructure frameworks generally use 
interpreted languages and tools that are unsuited to customization of low-level high-
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performance numerical algorithms used by scientific applications.  A further 
limitation of superstructure frameworks is that they require the end-user to become 
familiar another programming paradigms – that of the superstructure framework.  By 
contrast, web portals generally do not require any end-user knowledge of the portal 
technology/framework.  Of course, specialist applications support developers can 
provide the expertise needed for end-users of superstructure frameworks, but that 
just shifts, rather than removes, the complexity introduced by superstructure 
frameworks. 

Superstructure frameworks do have an important niche in interfacing scientific 
applications and standardizing interfaces to scientific applications.  However, they 
do not significantly simplify the development and support of the algorithms and data 
structures of parallel scientific applications.  For such a task, it is necessary to 
develop frameworks that reduce the development and maintenance cost for 
applications themselves.  Such frameworks are referred to either as infrastructure or 
scientific frameworks.

The Evolution of Scientific Applications 

Scientific applications software is always faced by the challenge of the moving 
target of scientific research and models.  Once a problem is “solved” it is no longer 
research, and the frontier of research is always moving towards ever more complex 
problems and models.  This is the “catch-22” of scientific software for research – 
software application and models often need to evolve to be relevant to the research 
community. In disciplines with large research communities and well-understood 
physics, such as quantum chemistry and atmospheric physics, the community may be 
supported by commercial or community codes – well-established scientific 
applications that are in widespread use and supported by a funded development and 
support team (e.g., Gaussian or NAMD [7] for Chemistry).  In such disciplines, the 
community need is for maintenance and extension of existing codes, rather than 
development of new codes. However in other research disciplines, such as 
geosciences, there are relatively few well-supported community or commercial codes 
in widespread use.  In such disciplines, software development and modeling is 
dominated by a patchy landscape of specialized codes each with a small band of 
loyal followers.  Reflecting on the difficult environment in which these codes 
originated and thrive, they are colloquially referred to as “hero codes” [8]. 

A hero code is simply a scientific application that was written to model a specific 
scientific research problem.  Common characteristics of hero codes include: 

Design and coding is done by one person, often a scientist with relatively little 
formal training in programming or software design 
High priority is given to modeling a very specific problem, or family of 
problems, for a publication or graduation deadline 
Low priority is given to documentation, adaptability, or reuse of the software 
The user-community for a given code often coincides quite closely with a 
particular school of thought within a discipline 
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Hero codes correspond to what is known in commercial software as a rapid 
prototype – where speed of development is initially a primary goal.  Rapid 
prototypes are intended to be “throw away” code [9] – used once, but then thrown 
away as the code was never built with maintainability and robustness.  However, 
experience in commercial software and scientific computing is that such prototypes, 
or hero codes, are rarely thrown away.  Instead what happens is that successful hero 
codes are copied and adapted, sometimes very painfully, to meet new requirements, 
such as: 

Changed scope of boundary and initial conditions beyond those originally 
foreseen in the initial code development.   
Different discretizations of the primary variables such as new meshes, elements, 
or interpolation functions of higher order or adaptive refinement. 
Changing the solution scheme, for performance or accuracy reasons 
Applying the code to include additional physics or to work on multi-scale, 
multi-physics (coupled) problems 
Scaling the code up to much larger problems – inevitably by parallelizing the 
code in one or more dimensions to be run in parallel on dozens or hundreds of 
processors 

Inevitably, once the original successful hero code is made available to a 
community it is copied and adapted by individual researchers, with little 
coordination or consistency in adaptation.  Multiple version of the hero code exist, 
and each new version just adds more complexity – there is often no incentive or 
funding mechanism for an individual researcher or research organization to perform 
a “cleanup” of the hero code and its versions.  By contrast, in commercial software, 
the maintenance costs of software a budget line-item, so there is strong incentive to 
drop or replace legacy applications that are expensive to maintain, or incrementally 
improve legacy applications through refactoring [10] – preserving the same 
functionality, but making incremental improvements in the design to enable reuse 
and extension. 

Scientific Software Frameworks 

Math libraries have been widely used for numerical software development since 
the 1950’s.  The evolution of such libraries gradually extended from simple scalar 
functions (e.g., sine or exp), to higher-level libraries: 

BLAS (Basic Linear Algebra Subprograms, 1979) – matrix and vector operations 
LINPACK and LAPACK (1990) [11] – solvers, built on BLAS 
These libraries gradually evolved to the point that optimized versions were 

available for most shared memory and vector processors by the 1990’s.  However, 
the rise of distributed memory systems complicated the implementation and use of 
such libraries.  Such libraries generally did not meet the criteria of a framework 
(extensibility, integration, and scope), and were functional rather than being object-
oriented.  Several key evolutionary steps were needed before libraries could evolve 
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into frameworks that effectively support portable scientific applications for 
distributed memory systems: 
a) A portable standard for message passing (MPI, 1992) 
b) Decoupling the library implementations of matrices and vector (e.g., sparse, 

dense, and how these are distributed across processors) from the interface to 
these abstractions.  This decoupling of interfaces from implementations is a 
powerful object-oriented mechanism for adaptability – the client sees only the 
interface, which can be dynamically replaced by any implementation of the 
interface. 

c) Provision of partial differential equation (PDE) solver libraries – where much of 
the complexity of many applications lies, with the greatest opportunities for reuse 
and productivity gains. 

d) Implicit parallelism – hiding the details of parallel decomposition and 
communication from users of the library (while allowing a choice of parallel 
decompositions through interfaces).  The design and implementation of portable, 
scaleable, and efficient parallel numerical methods requires considerable 
specialist labor and expertise. 

PETSc (1994) [12], the Portable Extensible Toolkit for Scientific computation 
was the first scientific library in wide use to incorporate these features.  The main 
application domain for PETSc is scientific applications based around linear solvers, 
although it includes support for other domains such as non-linear solvers. 

Fig. 1. The Architecture of PETSc 

What distinguishes PETSc from earlier numerical libraries is its use of object-
oriented abstractions, and an overall architecture.  Even a solver is an object, or 
context, that is filled in at runtime with information about the solver.  Within the 
domain of PDE solvers, PETSc is arguably the first scientific framework, as it 
satisfies the three key criteria of extensibility, interoperability, and scope (a large 
fraction of a many PDE based scientific applications can be implemented in PETSc). 
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PETSc has been widely used, deployed, and extended. Since PETSc, there have 
been several other frameworks for scientific computing developed, with somewhat 
different goals notably: Trilinos [13], CCA [8], and StGermain [14, 15].   

Trilinos has a somewhat different philosophy and implementation style to 
PETSc.  Firstly, it is implemented in C++, rather than C. Secondly, it is composed of 
contributed packages, as opposed to PETSc’s structure of a single integrated 
subroutine library.  The use of C++, which is an object-oriented “extension” of C 
scientific computing is increasing, and it is arguable that since almost any framework 
will be object-oriented, it is better to implement frameworks in an object-oriented 
programming language.  The downside of using C++ is that C++ is a considerably 
more complex programming language than C, especially when using advanced 
features of C++ such as templates and the BOOST libraries.  Such complexity may 
make it difficult for end-users, who are scientists rather than computer scientists, to 
use the framework.  In addition, the package structure and “contributed component” 
structure of Trilinos may lead to inconsistencies and incompatibilities between 
components as Trilinos evolves. Arguably, a consistent modular architecture is 
central to the success and evolution of frameworks. 

Both PETSc and Trilinos use object-oriented abstractions, and interfaces, 
between components, and abstractions for the foundation classes of numerical 
software (Matrices and Vectors – the Petra libraries in Trilinos and the implicit Mat 
and Vec abstractions in PETSc).  This means that PETSc and Trilinos should be 
interoperable, if appropriate wrappers and adapters are built. 

CCA, the Common Component Architecture, is an alternative approach to 
frameworks based on standardization of component interfaces, including a formal 
specification of the architecture.  So CCA is not really a software framework itself, 
but rather a meta-framework.  The success of CCA will depend upon the extent to 
which is adopted by the community and the perceived value of such a framework.  In 
practice, such “top-down” standardization efforts have not been very successful in 
the past (e.g., HPF).  Standardization works best in a “bottom-up”, tightly integrated 
fashion where the standard covers a quite limited application domain (e.g., MPI). 

StGermain 

StGermain is a framework, like PETSc or Trilinos, but has key architectural 
differences: 

It is component-oriented (using classes, implemented in C, and a component-
architecture)
It is hierarchical 

The traditional definition of object orientation is that all data is encapsulated in 
classes, and common behavior is factored out using inheritance and polymorphism 
(dynamic binding of methods or functions).  But merely being object-oriented does 
not ensure that an application or framework can be readily extended or adapted.  
Thus modern software frameworks have extended object-orientation into 
component-orientation, to facilitate reuse of components using a variety of 
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programming techniques, design patterns [16], and architectural principles.  These 
include: 
1. Run or load-time class definition – new classes can be created “on the fly”, and 

the data and methods of those classes specified at runtime 
2. Reflection [17] – at runtime, an application can query the properties of any class 

or object 
3. Factories [16] – once a class is defined, it is registered in a factory.  An 

application can create objects dynamically of any registered class 

Such component orientation is needed to support declarative programming [18] – 
a scientist specifies what the model should be, in a declarative language such as 
XML, rather than how the model should be implemented, in an imperative 
programming language such as C or Fortran.  The objects and classes are then 
generated from the declarative language.  StGermain supports this approach.  The 
advantage is that at the top-level, a scientist who is not a programmer can specify a 
model using XML 

A scientific application can be viewed at several different levels or layers, 
depending on the expertise and objective of the user at that layer  

Hierarchical software design and minimizing coupling between software 
components, have long been recognized as foundations of good software design 
(Myers, 1978 [19]). However, most scientific applications and other frameworks 
such as PETSc and Trilinos, do not tend be hierarchical: application I/O and model 
setup, physics, solvers, and component library calls are intermixed.  This makes 
scientific programs very difficult to understand and maintain (as a user or maintainer 
needs to understand all the layers).  By contrast, in StGermain the layers are all 
separate and hierarchical.  Such separation also facilitates reuse.  On top of the one 
component layer, many solver layers can be built, and on each solver layer many 

Model Layer - Scientist  
Models or solves real world problems, using 
applications frameworks developed by computational 
scientist 

Application Layer - Computational Scientist  
Develops application framework from constitutive laws 
(equations) using solver frameworks  

Solver Layer - Numerical Methods Developer 
Implements numerical methods and solver frameworks 
using generic software components 

Component Layer - Software Engineer 
Implements generic software components (e.g., Object, 
Class, Entry Points, Mesh, Particle Swarms) and 
interfaces
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application frameworks can be built (by solver, we mean any numerical or analytical 
method for solving a collection of PDEs, not just an implicit “Ax=B” solver).  We 
use the term application framework, as a StGermain application is highly 
parameterized – the input to the application can control the solvers and constitutive 
laws used, as well as the initial and boundary conditions.  The application layer input 
is an XML file (a Model).   

The Component Layer of StGermain is StgDomain and it includes approximately 
200 classes (implemented using C structs).  The key components of the StgDomain 
are:

Object and class support 
Local generic data structures: e.g., Vector, Set, Dictionary, and BTree 
Local numerical classes: e.g., Topology, Tensor, and ConvexHull 
Distributed numerical classes: e.g., Decomposition, Field, Mesh, and Swarm 
(particle collection) 

The StgDomain layer contains no “solver” components, such as Matrices (and 
hence makes no use of solver libraries such as PETSc).  Abstractions such as Vector 
and Set are there to hide or encapsulate the implementation of data structures such as 
a bitset or C vector.  Both Mesh and Swarm use the Decomposition class and are 
abstract classes (almost interfaces, but they have properties associated with them).  
Implementations of these classes can be created at load time.  The distributed 
numerical classes use MPI for communication. 

Many different solvers can be built on the StgDomain layer, such as Finite 
Element, Finite Difference, and Explicit solvers such as SPH.  In most cases, it is not 
necessary or worthwhile to develop new Matrix solvers from scratch, as there is a 
wealth of existing solvers available, from toolkits such as PETSc and Trilinos.  So 
StGermain often follows the strategy of “wrapping” existing solvers, in particular 
StGermain solvers make frequent use of PETSc for implicit solvers and the 
preconditioner and multigrid abstractions of PETSc.  Despite the frequent use of 
PETSc solvers (and solvers that PETSc itself wraps, such as HYPRE), it is not really 
correct to say that StGermain is “built on” PETSc, but rather that StGermain “uses” 
PETSc, where appropriate, though a fairly narrow interface that allows other solvers 
to be incorporated. 

The following solvers have been developed on top of StgDomain and are in 
production use: 
1. StgFEM – an implicit finite element solver framework, that uses PETSc 
2. PICellerator – a Particle In Cell (PIC) Lagrangian integration scheme and 

constitutive rule framework, that uses StGFEM.  PICellerator is a successor to 
the PIC algorithms and technology first developed in Ellipsis [20] 

3. Snac – a explicit finite-element continuum solver, similar in formulation to 
FLAC (Finite Lagrangian Analysis of Continua) 

4. SPModel – a surface-process (erosion and transport) solver framework, that 
extends the technology used in Cascade  

The Solver layer includes software tools, built using StgDomain, such as 
gLucifer – a visualization framework that provides both interactive and background 
rendering but concentrates on the latter for rendering frames of computationally 
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intense, remotely running applications (i.e. generates 4-D streaming movies while 
the calculation is running). It uses open source, freely available libraries such as 
OpenGL, X11, VTK, and libfame (a movie encoder). 

All the StGermain solver frameworks are 3D and 2D parallel, and distributed 
(using MPI and parallel libraries such as PETSc). 

Computational scientists can develop new applications from scratch by using 
solvers programmatically, but many scientists prefer to specify models just from a 
configuration file or script to an application framework.  A StGermain Application 
Framework specializes a StGermain Solver to an application domain, adding 
precompiled components and plug-ins appropriate to that domain, and makes all this 
available to a scientist using a declarative XML model configuration.  The 
StGermain application frameworks include: 
1. Underworld – for geodynamics applications (stokes flow) built on PICellerator 
2. Xanthus – for metal alloy deformation modeling, built on PICellerator 
3. Gale – for geodynmics applications (long-term lithospheric deformation), a 

Generalized Arbitrary Lagrangian Eulerian model, built on PICellerator 

Each application framework takes an XML model configuration file as input, 
which controls: 

Geometry and mesh setup – dimensionality, mesh size and shape 
Simulation parameters – e.g., timesteps and convergence/error tolerances 
Boundary and initial conditions 
Output – variables output to a journal file, visualization parameters (viewports) 
Contexts and plug-ins (e.g., for PDEs or material laws) 

StGermain applications make heavy use of both contexts and plug-ins, which are 
object-oriented design patterns that facilitate code adaptation.  A context is a set of 
functions that can be used to customize the behavior of a solver or model.  For 
example, viscosity can be calculated using several different laws in Underworld, 
including: 
– Arrehenius (viscosity is a function of depth and temperature) 
– Frank Kamenetskii (viscosity is a function of temperature) 
– Non-newtonian (viscosity is stress dependent) 

Each of these laws is implemented by a different function, or strategy, called 
from the same places in the solver, with the same interface (function specification).  
In traditional scientific applications, alternative strategies would be supported either 
by editing and recompiling the code or by “case” statements that control which 
strategy is called.  Experience is that maintaining applications with many case 
statements soon becomes unmanageable due to the interdependencies between 
various case statements and the tight coupling between the strategy functions and the 
code that they are embedded in.  In StGermain, strategies are bundled together into 
contexts, and at link-time the strategies used by a model are specified by the XML 
Configuration file written by the scientist.  A computational scientist or numerical 
analyst can extend an application or solver framework respectively by defining a new 
strategy (e.g., a new viscosity law), or generalize an application or solver framework 
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by replacing a fixed piece of code by a set of strategies (e.g., for calculating higher-
order elements in a Finite Element Solver). 

Conclusion

Scientific Software Frameworks for superstructure, such as web interfaces to 
scientific applications, are fairly well supported – there is no lack of toolkits for 
building websites or for producing bindings to legacy applications.   

By contrast, scientific software frameworks for infrastructure, such as PETSc, 
Trilinos, or StGermain, face many challenges, including: 

Portability – to different programming languages and parallel computing 
platforms.   
While C/C++ and Fortran are the dominant languages for scientific computing, 
there are others.  While there is not as much diversity of parallel computing 
platforms as there was a decade ago, there is still considerable diversity across 
Linux boxes, and many boutique parallel systems and emerging systems (such 
as Cell processors).  Some scientific developers have gone down the track of 
using a specification or Interface Definition Language (IDL) that can be 
compiled or linked to any other language (e.g., Babel/SIDL [8]), but such efforts 
are more in a research stage than production, and IDLs have not historically had 
much impact (e.g., UNCOL). 

Performance – scalability to peta-scale computing platforms. 
There is a major push to scale scientific applications up to peta-scale computing 
(tens of thousands of processors).  At such scales, any minor overheads in 
communication or load imbalance will have catastrophic performance impacts.  
Inevitably, peta-scale computing requires careful platform-specific tuning of an 
entire application, including and libraries used by the application.  For scientific 
software frameworks, this presents a real challenge, as tuning the framework 
adds complexity, and tuning for one application/platform may detune the 
framework for another. 
Install-ability – of the framework on a new platform. 
Portability measures the effort or complexity of extending the framework by the 
framework developers.  By contrast, install-ability measures the effort or 
complexity of installing and using the framework by scientists.  Most 
frameworks have a high degree of dependence on other libraries and platform 
tools, and so installing and upgrading a framework can be daunting for scientists, 
who generally have limited programming expertise.  
Complexity – of the framework and its applications. 
A single scientific application, no matter how difficult to maintain, will always 
be “simpler” than a framework.  As a framework grows in capability and 
sophistication it becomes more and more complex – and harder to learn and 
apply. 

All the above challenges are solvable, but at a cost in development, support, 
documentation, and training that is high relative to the size of the community.  
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Inevitably, tradeoffs need to be made between such challenges.  Also framework 
support costs cannot be justified by an economic return by commercialization of 
scientific software frameworks – the academic research community is just too small 
and under funded to justify extensive commercialization of scientific frameworks.  
The NAG framework is a commercial scientific framework; albeit somewhat less 
sophisticated than, say PETSc or StGermain.  However, NAG has had fairly limited 
impact due to the scientific communities focus on open-source or free software.  
Another approach that has been mooted is the use of “plug-ins” to commercial 
packages such as Matlab or Mathematica.  Matlab and Mathematica are interactive 
environments in widespread research and teaching use, with a mathematics-oriented 
input language,  that enable scientists to create scientific models faster than with 
traditional programming languages such as C, C++, and Fortran.  They both support 
parallel plug-ins, but little infrastructure support for developing parallel solvers or 
models.  In effect, both Matlab and Mathematica are convenient superstructure 
frameworks that any infrastructure framework, such as PETSc or StGermain could 
be coupled to. 

While the use of scientific software frameworks is increasing, the funding is low 
relative to the demand, and there have been many “false starts” on developing 
frameworks by well-intentioned computer scientists.  Inevitably, the use of 
frameworks and their sophistication will increase, but it will be a long, slow process. 
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Q&A – Bill Applebe 

Questioner: Brian Ford 
How are you addressing issues of code maintenance and support? 

Bill Applebe 
At the moment, we are not widely distributing our software, so the issues of 
code maintenance and support are not large. Instead of wide distribution, we 
are working with individual users and research groups to support their 
development of new applications using our software framework. From a 
technical viewpoint, for code maintenance and support we currently use a 
range of tools including nightly regression testing, unit tests for many 
components, online documentation, and collective code ownership. As and 
when our software becomes more widely used, we could look to several 
different models to cover the cost of code maintenance and support, ranging 
from forming a strategic partnership with a software vendor to offer 
commercial maintenance and support, to partnerships and funding from 
research support agencies to provide such funding. 

Questioner: Brian Ford 
C code is notoriously difficult to monitor. Is the use of C consistent with your 
intention of providing reliable user service? 

Bill Applebe 
Robust C libraries and frameworks require a great deal of internal checks on 
the parameters passed to the framework, and within the framework code to 
detect internal errors. We have such checks in place in many instances, and 
will continue to harden our code. Unfortunately, C and Fortran (which is 
equally unreliable), are the languages of choice for high-performance parallel 
code. More reliable languages, such as Java or C#, do not have the 
performance or availability for scientific computing. 

Questioner: Pat Gaffney 
One thing NAG has given the community is quality of the mathematics, 
numerical algorithms, and implementations. What are you doing to assure a 
level of quality for all of these aspects? 

Bill Applebe 
For implicit solvers, we use PETSc, which has its own group working on 
numerical accuracy. For explicit solvers, we are working with the numerical 
community and using a variety of benchmarks to ensure accuracy.  



Questioner: Julian Padget 
Please comment on the fragility of base code. Also, please discuss storage 
management and impact on performance. Also, please comment on 
practices such as pair programming and time boxing software engineering 
practices in your environment. 

Bill Applebe 
Our base code is fairly stable, but we are presently continuing to re-factor it 
as we gain experience and insight from applying the framework to new 
applications. For storage management, we use wrappers around C allocation 
and do not allocate small individual objects (such as Grid points or Particles). 
Instead we allocate large collections and use offsets into these collections for 
individual objects. We do not use Pair programming, but do use collective 
ownership. We have project deadlines and deliverables that are fixed (such 
as demos for site visits), but most of our deadlines are a little loose (not strict 
time boxing) as the software is supporting research projects, not commercial 
development. 



Thursday PM Panel Discussion 

Panel
 Bill Applebe 
 Hitohide Usami 
 Mutsumi Aoyagi 
 Sebastien Goasguen 

Questioner: Jim Pool 
While developing the systems have you discovered things the numerical 
software developers should have done or could have done to improve your 
systems? 

Bill Applebe 
Not really, from a "numerical software developer" viewpoint. We have 
discovered, and continue to discover, limitations of our software architecture, 
that we improve via re-factoring. 

Mutsumi Aoyagi 
I've been using several kind of numerical software, e.g. NAG, IMSL. There 
are no remarkable problems to improve our systems. With the help of this 
software, our nano-science applications have high level of portability, where 
machine dependent/independent parts are almost decoupled. 

Hitohide Usami 
I don’t know well the numerical software developers, but general domain 
researchers are conservative for new programming methodology and new 
information technology. I think if they can change the mind more aggressive 
for using new information science, then their research and our system more 
improve simultaneously. 

Questioner: Brian Ford 
What percentage of time in the project was spent in preparing a specification 
(or iteratively in intermediate specifications) as compare with building your 
Grid/Grid-enabled systems? Did you get the balance correct? 

Bill Applebe 
We find that with scientific applications, it is very hard to get an exact 
specification out of users. About the best you can do is to get the PDE's, and 
some idea of a method of solution and boundary conditions. But these ideas 
and the users’ needs often change during implementation. So we do not try 
to get or prepare detailed specifications. This contrasts with efforts such as 
CCA, the Common Component Architecture, which has devoted 
considerable time to specifications (only to find that when implementation 



commences, that the detailed specifications may contain errors, omissions, 
or ambiguities). 

Mutsumi Aoyagi 
Sum total 30 percents of time in our application development have been 
spent in preparing a specification, where the time spent for the first draft, the 
intermediate, and final version of specification are compared with the time for 
building systems. I think that these are well balanced. 

Hitohide Usami 
In NAREGI case, first year developed proto type system, second year 
developed alpha version and last year developed beta version. First year, a 
lot of time spent for specification through prototyping. Second year, 
specification time considerably decreased than first year. Last year, not so 
decrease than second year, because the core software changed from 
UNICORE to GT4 based on OGSA/WSRF. 

Comment: Bill Gropp 
Yes, PETSc does have a steep learning curve; however, learning it in a class 
is much faster than learning it on ones own. 

Bill Applebe 
The same is true of our framework, StGermain. If anything, it has a steeper 
learning curve than PETSc, as it is more sophisticated and built on top of 
PETSc for implicit solvers. The best way to learn StGermain is through 
apprenticeship with an expert. This will change over time at StGermain 
becomes more mature and we develop better and more comprehensive 
documentation, such as user manuals and case studies. 

Mutsumi Aoyagi 
I agree. 
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1 Introduction

In last decades, imaging techniques became central to the diagnostic process
providing the medical community with a fast growing amounts of information
held in images. This implies developing computational tools which allow a reli-
able, robust and efficient processing of data and enhanced analysis. Moreover,
clinicians may have the need to explore collaborative approaches and to ex-
change diagnostic information from available data. A medical experiment often
involves not a single approach but a set of processings that should be sometimes
executed concurrently.

Grid computing is becoming a cost effective emerging technology for high
performance computing aggregating resources that cannot be available locally
[16]. In particular, grid technologies are a promising tool to deal with current
challenges in medical domains. On the other hand, employing a distributed in-
frastructure, where nodes may be geographically scattered all around the world
and not dedicated to a specific application, is not without a price. The chal-
lenge of the grid computing paradigm derives mainly from the dynamic nature
of resource requirements. In this context, in particular, reliability is a key issue
and critical to the correct diagnosis.
Here we are concerned with improvements and enhancements of a medical imag-
ing grid enabled infrastructure, named MedIGrid, oriented to the transparent
use of resource-intensive applications for the management, processing and vi-
sualization of biomedical images [5, 8, 6]. MedIGrid has been designed so that
users can schedule reconstruction jobs needed in tomographic nuclear imaging
or the denoising of ultrasound images arising in 3D echocardiography.
In this paper we focus on the optimization of the software routines of MedI-
Grid for dynamically adapting to changes in the computational nodes. More
� This work has been partially supported by the 2004-2006 PRIN 200415818 Italian

National Project and the 2000-2006 PON SCoPE Italian National Project.



precisely, we deal with the monitoring and the migration of a parallel algorithm
based on the PETSc library [3] for denoising of 3D ultrasound images.
The paper is organized as follows: in Sec. 2 a brief description of MedIGrid
infrastructure is presented, in Sec. 3 the images reconstruction application is
introduced, in Sec. 4 the Performance Contract System and its implementation
inside the PETSc parallel algorithm is discussed, finally in Sec. 5 conclusions
and future work are presented.

2 MedIGrid infrastructure

The testbed we are presently using, is made of acquisition systems and stor-
age resources located in Florence (Careggi Hospital) and Genoa (S. Martino
Hospital), computational resources in Naples and Lecce, grid access points in
Naples and Genoa. The client side allows to set up the input and to monitor
the reconstruction process by means of a user-friendly graphical interface. More
precisely, the computational servers are:

IA-64-1 : cluster of 60 nodes operated by the INFN (Istituto Nazionale Fisica
Nucleare). Each node of the cluster is composed by two Itanium 2 proces-
sors running at 1.4 GHz and with 4 GB of main memory. The nodes are
connected by a switch Quadrics QSNet II. The operating system is Red Hat
Enterprise 3 Linux, equipped with the hp-mpi, PETSc 2.2.1 and Autopilot;

IA-64-2 : cluster located at the University of Lecce with the same features of
IA-64-1;

UniPart1 : cluster of 8 nodes located at the University of Naples, Parthenope.
Each node is an Intel Pentium 4 HT running at 3 GHz with a main memory
of 512 MB. The operating system is Fedora Core 3 Linux, equipped with
mpich 1.2.7, PETSc 2.2.1 and Autopilot;

UniPart2 : cluster of 25 nodes operated by the University of Naples, Parthenope.
Each node is an Intel Pentium 4 HT running at 2.8 GHz with a main mem-
ory of 512 MB. The operating system is Fedora Core 3 Linux, equipped
with mpich 1.2.6, PETSc 2.2.1 and Autopilot.

The clusters in Naples are connected by a 1 Gbits metropolitan area network,
while Naples and Lecce are linked by a 155 Mbits wide area network; the Globus
4 middleware has been used to build the computational grid.

More recently, the system has been upgraded with several new, advanced
features, including grid services, available through the User Portal; an applica-
tion oriented brokering service, as part of the application manager, to enable
dynamic discovery and allocation of computing resources, an xml based con-
figuration model to set parameters related to the execution of the software [7].
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The following section describes the parallel algorithm that we have developed,
using PETSc, for denoising a sequence of 3D ultrasound images of the heart [9].

3 The PETSc-based parallel algorithm

A 3-D image is the function

u0(x1, x2, x3) : Ω −→ �+
0 , Ω ⊂ �3; (1)

a 3-D sequence of images is the function:

u0(x1, x2, x3, θ) : Ω × I −→ �+
0 , Ω ⊂ �3, (2)

where I := [0, T ] is the time interval during which the acquisition of the sequence
has been performed. We consider the following equation describing the denoising
of the 3-D sequence:

∂u

∂t
= clt(u)∇ · (g(|∇uσ|)∇u); (3)

[11, 22]. Equations are accompanied with zero-Neumann boundary conditions
in space, initial condition is given by (2); finally, we suppose periodic boundary
conditions in time.
The function clt(u) is a scalar function representing a measure of coherence in
time for the moving structures [21]; g = g(s) is a continuous function satisfying:

g(0) = 1, lims→∞g(s) = 0, (4)

and uσ := Gσ ∗u is obtained convolving u with a 3-dimensional Gauss function
of zero mean and variance equal to σ,

Gσ =
1

(2
√

πσ)3
e−|x|2/4σ. (5)

In order to compute uσ we have to solve the Heat equation:

∂u

∂t
= ∇ · (∇u) (6)

in [0, σ] with initial condition u0. We now briefly describe a common numerical
scheme for the discretization of (3). Details can be found in [9].
Let N = n1 × n2 × n3 be the dimension of the 3-D frame, nscales the number
of scale steps that are performed and, finally, τ be the discrete scale step; let
us consider a space-time sequence consisting of n4 3-D frames of dimension N ,
and let θ := T/(n4−1) be the discrete time step; we denote by ui

j the jth frame
in the ith scale step,

ui
j(x1, x2, x3) := u(iτ, x1, x2, x3, jθ), (7)
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where
i = 0, 1, · · · , nscales − 1,

x1 = 0, 1, · · · , n1 − 1,
x2 = 0, 1, · · · , n2 − 1,
x3 = 0, 1, · · · , n3 − 1,
j = 0, 1, · · · , n4 − 1.

Numerical discretization has been performed by using a semi-implicit scheme
in scale, that is the nonlinearities are treated using the previous scale step,
then linearized, while the linear terms are handled implicitly. Semi-implicit
discretizations of ui

j(x1, x2, x3) is shown in Fig. 1.

u(x, 0) = u0

% loop over the scales
for i = 1, nscales do

% loop over the frames
for j = 0, m do

solve
ui

j−ui−1
j

τ
=

clt(ui−1
j )∇ · (g(|∇(ui−1

j )σ|)∇ui
j)

endfor
endfor

Fig. 1. semi-implicit scheme for the numerical solution of (3).

The semi-linear discrete equations that arise, i.e. :

ui
j − ui−1

j

τ
= clt(ui−1

j )∇ · (g(|∇(uσ
j )|)∇ui

j), (8)

are discretized in space via finite volume method [18]; we solve (6) with a semi-
implicit scheme in scale as well, that is:

uσ
j − ui−1

j

σ
= ∇ · (∇uσ

j ), (9)

where finite volume discretization in space has been used as for the equation (8).

Two main computational kernels arise, that is, the solution at each scale
step i and for each frame j, of the linear systems:

AHE uσ
j = bi

j , (10)

AME ui
j = bi

j , (11)
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with
AHE ,AME ∈ �N×N ,bi

j ∈ �N ,

where (10) refers to the space discretization of (9) and (11) to that of (8).
In Fig. 2. a schematic description of the algorithms that we have implemented
is shown. The matrix AHE depends upon σ and the size of the space discretiza-
tion grid, so it is built only once, while AME depends upon quantities that
change their value both with the scale step and the frame. As a consequence,
its entries have to be recomputed m × nscales times. Right-hand side bi

j con-
tains the values of ui−1

j , i.e. the frame at the previous scale.

build AHE

% loop over the scales
for i = 1, nscales do

% loop over the frames
for j = 0, m do

1. Init AHEuσ
j = bi

j

2. solve AHEuσ
j = bi

j

3. build AME

4. solve AMEui
j = bi

j

endfor
endfor

Fig. 2. multiscale analysis of a sequence of 3-D frames: outline of the algorithm.

Both AHE and AME are large, sparse and structured; more precisely, their
non-zero elements are located along seven diagonals: the principal diagonal
and the three upper and lower diagonals respectively. Since we use the same
discretization scheme both for (9) and (8), AHE and AME have the same
symmetric sparsity pattern; finally, AHE is symmetric with respect to its entries
as well, while AME is not for the presence of function clt(u) in equation (3).
AHE and AME are positive definite M -matrices symmetric in their structure.
AHE is besides symmetric with respect to its entries too. The properties we
mentioned motivate the effectiveness of two popular Krylov projection methods,
the Conjugate Gradient (CG) and the General Minimal Residual (GMRES)
[13]. Both CG and GMRES are provided by the PETSc library [3]. Parallel
approach is domain decomposition-based, i.e., we distribute the image domain
among processes. In particular, we choose the Slice Partitioning, that is, the
image is partitioned along one single dimension. Let Ω ⊂ �3 be the image
domain, as defined in (1) and (2); Ω is a rectangular domain, with n1, n2, n3

be its three dimensions. We distribute the domain along the third dimension
only: if p is the number of processes, each process id, 0 ≤ id ≤ p − 1, will have
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nid slices of the 3-D image (that is, n1 × n2 × nid voxels), where:

nid =
{

n3/p + 1 id < (n3/p)
n3/p otherwise.

(12)

Let (i, j, k) be the coordinates of a voxel Vl in the n1×n2×n3 image; voxels
are numbered in a row-major fashion on successive planes, so, since each voxel
generates one equation of the linear system and l corresponds exactly to the
number of the equation generated by Vl, it follows that the slice partitioning
gives rise to a row-block fashion distribution of the system matrix, that is,
blocks of contiguous rows are distributed among contiguous processes. Slice
partitioning has been chosen because the row-block fashion distribution is the
standard PETSc matrices decomposition, and redistribution before the solution
of the linear systems, is avoided.

4 Monitoring and Migration of the algorithm

The software architecture of MedIGrid is composed of three main layers: core
services, based on the Globus toolkit, collective services, including the Resource
Broker (RB) and the Performance Contract System (PCS), and the Application
Manager (AM) that collects the software units that deeply interact with the al-
gorithms during their execution. Some previous works refer to the Performance
Contract System and to the Resource Broker [10, 17]. Here we focus on the
deployment of the PCS for steering the performance of the parallel algorithm
as described in section 3 in Figure 2. To this aim, following [2, 4] the reference
workflow of the AM can be sketched as follows: the AM invokes the Performance
Modeler with input parameters and information related to the computational
resource. The Performance Modeler provides an execution model of the algo-
rithm. The execution model, the input parameters and the machine parameters
are given as ”contract” to a Contract Developer. If the contract is approved the
AM provides to spawn the job on the given resource. The Contract Monitor,
monitors the times taken by the application while the AM waits for the job to
complete. The job can either complete or, in case of contract violation, suspend
its execution. If the job has completed the AM exits. If the job is suspended,
the AM collects new information given by the brokering service and by the
Contract Developer and it starts the phase again. In this latter phase a migra-
tion of the application onto another available resource can occur in such a way
that the performance contract is satisfied. Hence, the entire process consists of
a Periodical rescue of the execution state (recovery); a Run-time check of the
execution flow (monitoring ); a Process resumption on alternative resource
(migration).

The contract verification consists of comparing the execution time of the
algorithm with the one stated in the Performance Contract itself. We consider,
as expected performance, the execution time of a computational kernel of the
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algorithm. In particular, we consider the execution time needed for denoising
frame 1 at scale 1.

To monitor the algorithm, the Autopilot library [20] is used. The algorithm
is instrumented by means of sensors and actuators to enable it to adapt its flow
according to the performance level.

The migration step is aimed to suspend and migrate the execution of the
algorithm on another resource in such a way that the performance contract
is satisfied. We enable the parallel algorithm for saving current state and for
restarting on another resource. More precisely, as shown in Figure 2, the algo-
rithm consists essentially of two nested loops: the outermost over scale i and the
innermost over the frame j. Denoising a single frame at each scale is performed
by four steps: the first (init) and the third (build) steps have a computational
complexity that does not depend on i and j, whereas the computational cost
of the second (the parallel CG ) and the fourth (the parallel GMRES) depend
on the number of iterations needed to reach the requested tolerance, hence it
depends on i and j. Note that both CG’s steps and GMRES’s steps have a
computational cost that depends only on the size of the frame.

In order to select a resource on the basis of its computational power it
is a common way to run a benchmark by the Performance Modeler [1, 14].
As benchmark of the k-th computational nodes of the grid, we consider the
execution time, T (0)(1, 1), needed for denoising frame 1 at scale 1:

T (k)(1, 1) = T
(k)
init + T

(k)
CG(1, 1) + T

(k)
build + T

(k)
GMRES(1, 1) (13)

where:

– T
(k)
init is the execution time of step 1

– T
(k)
CG(1, 1) is the execution time of step 2 on frame 1 at scale 1

– T
(k)
build is the execution time of step 3

– T
(k)
GMRES(1, 1) is the execution time of step 4 on frame 1 at scale 1

Starting from the benchmark on the first frame we can provide an estimate
of the execution time of the algorithm on a generic frame. Let:

– ΔCG(i, j) be the number of iterations of step 2 on the frame j at scale i
– ΔGMRES(i, j) be the number of iterations of step 4 on the frame i at scale j

then
ΔCG(i, j)
ΔCG(1, 1)

T
(k)
CG(1, 1) and

ΔGMRES(i, j)
ΔGMRES(1, 1)

T
(k)
GMRES(1, 1)

provide respectively an estimate of the execution time of CG and of GMRES
on frame i at scale j.

Using the benchmark given by (13), taking into account that both T
(k)
init

and T
(k)
build do not depend on i and j, the expected execution time needed for

denoising frame j at scale i on the k-th node, and used by the Performance
Contract, is the following:
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PC(k)(i, j) = T
(k)
init+

ΔCG(i, j)
ΔCG(1, 1)

T
(k)
CG(1, 1)+T

(k)
build+

ΔGMRES(i, j)
ΔGMRES(1, 1)

T
(k)
GMRES(1, 1)

(14)
A first set of experiments has been executed with the aim of validating (14).

These experiments are executed on clusters IA-64-1 and UniPart1. Tables 1
and 2 report results concerning the denoising of a sequence of 14 frames of size
151×151×101. We show the Performance Contract PC(0)(1, j) related to node
0 for all values of j (the frames) and for i = 1 (one scale), and the execution
time T (0)(1, j) (in seconds) for denoising the frame j. Further we show, in the
last column, the relative error obtained estimating the actual execution time
and that estimated by the Performance Contract. Note that the error is of 10%
at most. Results refer only to node 0 because we did not observe significant
differences with the other nodes of the clusters IA-64-1 and UniPart1.

Table 1. Monitoring on the cluster IA-64-1

Frame PC(0)(1, j) T (0)(1, j) Relative
index (in secs.) (in secs.) error

1 20.9512 20.9512 0.00
2 14.4678 13.3022 0.08
3 14.7625 13.5491 0.08
4 15.6466 14.4584 0.08
5 16.5307 15.3111 0.07
6 16.2360 15.0253 0.07
7 15.6466 14.3392 0.08
8 14.7625 13.5789 0.08
9 14.4678 13.2639 0.08
10 15.6466 14.3577 0.08
11 15.3519 14.0668 0.08
12 15.6466 14.3602 0.08
13 15.6466 14.2467 0.09
14 19.7724 18.8719 0.05

Migration is a crucial task, because it depends on the relative overhead. Of
course, such overhead may drastically change if migration occurs on nodes of
the same resource or it is needed to migrate on another resource. In the Table
3 we report, in the first column the time (in seconds) needed to migrate on
other nodes of the same cluster (we refer to the local migration), in the second
column we report the time (in seconds) needed to migrate on different resources
of the same geographic area, and we consider the two clusters located in Naples.
Finally, in the third column, we report the time (in seconds) needed to migrate
on the cluster located in Lecce (we refer to these last two cases as to a remote
migration).
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Table 2. Monitoring on the cluster UniPart1

Frame PC(0)(1, j) T (0)(1, j) Relative
index (in secs.) (in secs.) error

1 28.0687 28.0687 0.00
2 21.9950 20.3260 0.08
3 22.2711 20.6368 0.07
4 23.0993 20.9746 0.09
5 23.9275 21.5562 0.10
6 23.6515 21.2710 0.10
7 23.0993 20.8936 0.10
8 22.2711 20.1092 0.10
9 21.9950 19.9545 0.09
10 23.0993 20.8051 0.10
11 22.8232 20.7351 0.09
12 23.0993 20.7394 0.10
13 23.0993 20.8089 0.10
14 26.9644 25.4509 0.06

Table 3. Local vs. Remote Migration time (secs.)

Task Local Naples area wide area

New resources selection 0 240 240
Data moving (1 frame=3MB) 0 6 0.2
Application starting 1 1 1

As expected, the overhead introduced by the resource brokering in case of
remote migration, is much larger than that for the local migration. Therefore,
let:

– Tmo be the migration overhead, as reported in Table 3;
– Rold be the execution time needed to terminate the algorithm on the initial

resource;
– Rnew be the execution time needed to terminate the algorithm on the resource

where it migrates;

then, a migration on another resource occurs if

Rnew + Tmo < Rold

where Rold is estimated by the Migration Manager as follows:

Rold = T̂ · nscales · RF

where T̂ is the average time needed on for denoising the frames before the
migration, and RF is the number of frames not yet denoised. To estimate Rnew

the Migration Manager evaluates the ratio between the benchmarks on the
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two systems, as defined in (13). More precisely, let Bold and Bnew respectively
denote the average benchmarks computed on all nodes of the initial resource
and of the alternative resource, then, the Migration Manager computes:

Bnew/old =
Bnew

Bold

and we assume that:
Rnew 
 Bnew/oldRold

From Tables 1, 2 and 3, we observe that a remote migration should occur
only if a strong violation of the Performance Contract occurs while the algorithm
is processing the first two or three frames. Otherwise, once first frames have been
processed, the overhead makes the remote migration not convenient. However,
in our experiments, the overhead relative to the remote migration is mainly due
to the execution of the benchmark needed for the selection of an alternative
resource. This step is executed at runtime when the Monitor detects a contract
violation. Of course, to reduce this overhead, the benchmark values should have
been already available.

5 Future Works

We are currently working on the introduction of a fault-tolerance mechanism
into the PETSc based application combined with some kind of checkpointing
[12, 19]. We are using an algorithm-based approach relying on FT-MPI [15]
which provides the software tools needed to identify and manage faults. We are
using a disk based checkpointing method, indeed the algorithm already writes
onto the disk the vectors ui

j for each i and j. Moreover, to compute the vector
ui

j we only need ui−1
j−1, ui−1

j and ui−1
j+1. Then, in order to recover from a fault

we restart from those i and j corresponding to the last computed ui
j , and the

check of faults is performed at the end of each step of the innermost loop of the
algorithm.

FT-MPI allows to re-spawn failed processes and to decide if to drop, or
not, all ongoing messages. Moreover, when FT-MPI is used, the MPI context
is redefined after each process is re-spawned. The main drawback seems to be
the heavy dependence of all the PETSc global objects on the MPI context: i.e.
the PETSC COMM WORLD macro, used by all PETSc objects, is a “copy” of the
underlying MPI COMM WORLD MPI context. This suggests to address the fault-
tolerance by the following steps:

– check the status of the processes: if a process has been re-spawned, then:
– destroy the PETSc environment with all its objects,
– re-inizialize the PETSc environment and create all the PETSc objects that

are needed,
– restart the iterations from the last computed and saved ui

j .
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Q&A – Vania Boccia 

Questioner: David Keyes 
PETSc, Aztec, Scalapack and other scientific libraries that you propose to be 
modified for fault-tolerance are in use worldwide and there is a potentially 
enormous interest in such a development. I recommend that any such 
modifications, to be accepted, be undertaken in conjunction with the 
developers. Please comment. 

Comment: Bill Gropp 
The PETSc group is interested in understanding the best ways to integrate 
the changes or extensions you need to PETSc. 

Vania Boccia 
The introduction of fault tolerance mechanisms as those described in the 
talk, on our PSE's numerical kernels requires the modification of the 
algorithms source code. In the case of MEDITOMO library in fact, we worked 
on its two algorithms (Conjugate Gradient and Expectation Maximization) to 
enable them to do fault management, by modifying their source codes. This 
is the reason because we didn't introduce these mechanisms on the second 
PSE library (ECOCG). It is based on the PETSc library and we thought that 
every eventual modification in a such used library, should be done together 
with library developers. 

Questioner: Brian Ford 
Who pays for each analysis? Do Doctors keep their own copy of each image 
(as well as the copy in the system database), and are the patients given a 
copy? How is this provided? 

Vania Boccia 
At present the project has an experimental status - it is sponsored from the 
two basic research projects I cited in the talk and nobody pays for any 
analysis. In this phase the doctors have some authorized test images stored 
in their database at the hospitals. Regarding to the personal copy of the 
images I don't know if patients have it; this matter is managed directly by the 
doctors. 

Comment: Pat Gaffney 
Transporting images to patients in order satisfy the UK Data Protection act, 
comes under the category of MOVING data, which the speaker mentioned. 
Most Western countries have restrictions on MOVING medical patient data. 
What the patient does with his or her data is not the concern. It is the 
movement that must be secure. 



Vania Boccia 
The data movement in the environment is granted by the secure channel 
provided by the Globus GridFTP protocol. Furthermore data about the patient 
identity is not present in the data moved. This information remains at the 
hospital database. Anyway, at present this problem has not been faced, but 
we are investigating local laws and how other research groups think to solve 
security issues.  

Questioner: Brian Ford 
Why is the limit of 10 set on the iteration count for CG? 

Vania Boccia 
To “cure” the problem's ill conditioning, iterative methods that have the so 
called semi convergence property are used. For these methods, there exists 
an optimal number of iterations that gives the least value of the residual at 
the solution. Numerical experiments gave the proof that the optimal iteration 
number for the CG algorithm is ten while for EM it is six.

Questioner: Brian Ford 
Presumably the physician can always seek a reprocess if he feels that fault 
correcting processes have not been sufficiently successful for his needs. 
Note the difficulty of comparing the two images in such systems. 

Vania Boccia 
The doctor can require every time he wants to process again the data that 
have been already processed. He can for example ask for reprocess these 
data with different algorithms and make a comparison. This is possible and 
not difficult in actual version of the PSE. Output images are stored and there 
is a little search engine to find set of images to be compared. 
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We introduce and discuss preliminary experience with an application that has
vast potential to exploit the Grid for social benefit and offers interesting resource
assessment and allocation challenges, having real-time aspects: image registra-
tion. Image registration is generally formulated as an optimization problem that
satisfies constraints, such as coordinate displacements that are affine or volume-
preserving or that obey the laws of elasticity. Three-dimensional registration of
high-resolution images is computationally complex and justifies parallel imple-
mentation. In turn, ensembles of registration tasks exploit concurrency in the
simpler sense of job farming.

Registration is an elementary example of a much larger class of large-scale
mesh-based computations that are in principle amenable to execution on the
Grid, but are sensitive to workload-to-capability balance at synchronization
points. While better resource assessment and allocation tools lift all such ap-
plications, reducing sensitivity to synchronization within an individual appli-
cation is a complementary and equally important objective. We therefore ex-
amine the potential for weakening the synchronization sensitivity of general
mesh-based bulk synchronous computations through less restrictive program-
ming paradigms.

Keywords: Medical image registration, asynchronous numerical algorithms,
Grid-based processing, MPI-based parallelization

Introduction

Imaging is exploding and, with it, so are the needs and opportunities for image
registration. A recent catalog of books and journals on imaging from a single
publisher [26] lists 5 pages of imaging journals, 13 pages of books on imaging
techniques (CT, fMRI, ultrasound, etc.), 29 pages of books on diagnostic imag-
ing of specialized anatomical domains, and 6 pages of books on radiotherapy and
image-based intervention. Telling as well, with respect to clinical applications,
is the formation of a new Journal of Real-time Image Processing.



Imaging applications are ripe for the Grid. The Globus-based MEDICUS
system has already “broken the medical image communication barrier” [17], in
the sense that raw images can be shared with unprecedented speed and trans-
parency. The communication breakthroughs of the Grid create opportunities in
Grid-enabled processing, as well, by opening up vast possibilities for registration
of images that were previously not simultaneously available.

Numerical computing on the Grid, of which image registration is an example,
is, in turn, only one of several categories of Grid-based applications, and has
not so far been a significant driver of the Grid overall. The Grid is yet to
be exploited by most computational scientists, though it is potentially very
useful for applications requiring real-time solution or exceptional amounts of
memory. This potential will be realized after two independent trends, each
with its own inertia, converge: better tools for understanding and harnessing
the dynamic performance capabilities of the Grid, and better asynchronous
algorithms implemented in consistency-relaxed parallel programming models.

A basic problem that motivates this work can be posed as follows: given a
number of images that require registration, an MPI-based program to perform
the registration, and a collection of Grid-enabled compute resources, compute
the registrations by a specified time or estimate for the user what portion of the
registrations can be completed before a given time. A currently available affine
linear registration code has complexity roughly linear in the voxel volume. The
target images are 10243. Our test images of 1283 voxels require approximately
5 minutes of processing on a commodity cluster of 8 dual nodes. The targets
should therefore take approximately two days to run on such a cluster. The
kernel that dominates CPU cycles is multivariate interpolation. The task is
easily partitioned into arbitrary working-set distributions by apportioning sub-
domains (subvolumes) of the image space to processors. The processing that
needs to be done to back out the parameters that specify the three-dimensional
affine map is negligible in comparison to the easily partitioned interpolation
work. However, there is synchronization at regular intervals between interpo-
lation steps. Although our demonstration is confined to affine registration, the
techniques are extensible with the same computational issues to more general
registrations of clinical importance.

In Section 1, we consider the motivation for real-time registration, some
registration algorithms, an example of registration, and an initial feasibility
demonstration of registration recently conducted on the Grid. Section 2 backs
up from registration as a particular application and examines advances in asyn-
chronous algorithms more generally, in terms both of algorithms and software
infrastructure. We conclude in Section 3 with some speculations.

The philosophy of this presentation is that algorithms must be adapted or
created to bridge to “hostile” architectures to support applications, taking both
the applications and the architectures as givens. The interplay of applications
and architectures with algorithms is a two-way street, generally. Knowledge of
algorithms can influence the way applications are formmulated and the way
architectures are constructed. More often than otherwise, however, it is the
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algorithms that must adapt to inflexible architecture and nonnegotiable formu-
lations of the application.

1 Image registration

Real-time registration has numerous applications. In medicine, alone, regis-
tration arises in many contexts. Diagnosis and surgery planning make use of
patient-to-reference anatomy registration. The evaluation of fitness for trans-
plants makes use of patient-to-patient registration. In addition, patient-to-self
registration of images taken at different times may be useful in monitoring
progress. Besides clinical applications, real-time registration arises in automated
surveillance, in which the goal is to recognize people whose images are stored
in a database. In the area of robotics, manipulation of and navigation in the
environment depends upon recognition of objects, which can include real-time
registration aspects. Finally, we mention as a motivation for the importance
of performing image registration tasks quickly the novel technique of super-
resolution [9], which relies upon repeated registrations of an object that is mov-
ing with respect to the viewer. As its name implies, super-resolution is able
to produce high-resolution images by comparing a series of low-resolution im-
ages of the same object. Intuitively, information at sub-pixel resolution that is
“lost” in any one image can be recovered from staggered images in which the
underlying information is captured in pixels that are displaced by a fraction of
a pixel cell. This powerful technique allows a tradeoff between the quality of
the instrument capturing the image in digital form and the capability of the
computer system processing the resulting data.

1.1 Mathematical setting of registration

The typical mathematical setting of registration is optimization. One posits an
objective function whose minimization is designed to minimize mismatch be-
tween a pair of images and seeks a transformation of one image into the other.
This sounds simple in principle, but the simplicity can be deceptive. One must
be careful, for instance, not to allow uncorrelated pixel-to-pixel matches from a
list of pixels in one image to those of another, or else continguity of the trans-
formation could be lost. Constraints may be imposed to preserve contiguity, to
preserve volume, to map certain key points, etc. Since the number of constraints
is generally vastly smaller than the number of parameters to be determined in
a deformation map of one image into another, regularization is almost always
required to remove ill-posedness.

Many optimization problems that arise in registration, as in other fields,
require the solution of discretizations of elliptic partial differential equations;
hence numerical ill-conditioning is often present. The data sets may be large-
scale, with multiple billion-voxel images (thousand-fold resolution in each of
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Fig. 1. Registration of hand images by a multilevel technique. The original pair of
images is in the upper left. The next four pairs of images show successive stages of the
registration process at successively finer resolutions, ending with the registered pair
in the lower right.

three dimensions) coming on line, requiring parallel computing for each regis-
tration, in addition to distribution of registration of multiple image pairs over
the Grid.

The field of image registration is mathematically rich, with both new theory
and new heuristics playing roles in moving it forward.

Finally, in production mode, registration presents challenges in terms of
managing the computational workflow, with issues of transparent archiving,
remote access, and security requirements arising in conjunction with large data
sets.

Mathematical descriptions of registration The problem of image regis-
tration can be posed intuitively as follows [22]: “given a template image and
a reference image, find a transformation of the template image such that it
becomes similar to the reference image.” Images may be considered as fields
over domains, in which a template image T (x) = T (x1, x2, x3) and a ref-
erence image R(x) = R(x1, x2, x3) are given and a transformation u(x) =
[u1(x), u2(x), u3(x)] is sought such that T (x + u(x)) ≈ R(x). An example of a
pair of images to be registered is given in Figure 2.

The generality of the flow u(x) can be controlled by its parameterization.
A general affine map in three dimensions consists of just twelve parameters,
independent of the number of pixels in the image:
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T(x) R(x)

T(x+u)-R(x)

Fig. 2. T (x) for a two-dimensional slice through the midplane of a head. R(x), a
reference image for the head. T (x+ u)−R(x) after construction of a coordinate flow
u.
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Determination of the parameters is through minimization in some norm of
an objective function. A typical example is

min
1
2
||T (x + u) − R(x)||2 + αS(u), (2)

where S is a regularization term and α is a weighting parameter that strikes a
compromise between similarity and regularity. The regularization may, for in-
stance, penalize lack of smoothness in u. Registration based on the minimization
of distance between two images, alone, is in general ill-posed. The parameteri-
zation of the registration is also a form of regularization through the choice of
basis. A subspace regularization may be employed to restrict the generality of
u, for instance

min
1
2
||T (x + Qz) − R(x)||2. (3)

Besides minimizing the distance between images, one can minimize the entropy-
related concept of “mutual information” [29], or normal gradient fields [15],
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which is particularly useful for registration of images from two different modal-
ities, such as CT and MRI, or a number of other objectives. Though the problem
statements are simple, the solutions may not be unique.

Multilevel algorithms [14] seek to overcome the problem of multiple minima
by successively registering the same pair of images at resolutions ranging from
coarse to fine. While the mathematics is formal, the motivation is very intuitive
and has been exploited in many areas of optimization that are plagued by
multiple minima. Projections of the problem into coarse spaces obscures the
local minima, which can only be differentiated at finer resolutions. As the fine
structure is revealed, the registration settles into a particular local minimum,
which is hopefully the global one. Figure 1 illustrates. If one imagines a properly
rotationally oriented template hand being moved continuously over the reference
hand, one can envision nine or more local minima, as first one, then two, then
successively more fingers overlap, with the best minimum obtained in the middle
when all five appendages overlap.

There are many types of registration objectives, including those based on co-
locating landmarks, aligning principal axes, correlating image intensities, min-
imizing elastic deformation, and conserving volume. While the variety is large,
and the motivations that drive selecting among the choices beyond the scope
of this overview, the optimization setting provides a mathematical framework
that leads to the computational data structures and the types of operations
that must be executed over them.

1.2 Computational characteristics of registration

Typical contemporary registration problems may be two- or three-dimensional,
and may vary widely in discrete size from tens of KB to many GB per individ-
ual pixelated or voxelated image. Inheriting contemporary tools from computa-
tional optimization, the algorithmic building blocks of importance are Newton-
like nonlinear solvers [19], Krylov linear solvers [13], multilevel [3] and other
linear preconditioners [25] to solve the discretized problem, and multivariate
spline interpolation [2] to allow the images to be compared at chosen sets
of points. Large, sparse matrix methods predominate. Domain decomposition
leads to advantageous surface-to-volume communication-to-computation ratios
that permit weak scaling in an implementation sense [20]; see the next section
for details. Multilevel preconditioners are capable of preserving weak scaling in
a convergence sense [27].

1.3 Grid-based illustration of registration

To illustrate the potential for real-time registration on the Grid in a very prelim-
inary way that is representative of, but not pushing, the state of the art, we con-
sider a data set of 20 three-dimensional images of pig’s heart, each 128×128×64
8-bit voxels (resolved on a gray scale from 0 to 255) or 8 MB per image. The
images comprise a time series. One is taken as the reference, and 19 pairwise
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registrations are performed to study the deformations of the heart. An SPMD
code implemented in C and MPI to perform affine registration was provided
by co-author Heldmann. Its input is a pair of images, the reference and one
template, and the output of each execution is very compact – a set of 12 scalars
describing the map. Such a compact output enables instant verification of the
correct execution of the code in distributed environments.

The facility employed for the test is the Skynet cluster at ISI, a collection
(at the time of writing) of 96 dual processor Intel P3 nodes, with a range of
clock ratings from 800 to 1200 MHz. The Web Services Grid Resources Alloca-
tion and Management (WS-GRAM) [30] component of the Globus [12] toolkit
is used to distribute the registration tasks. The GRAM service provides a single
interface for requesting and using remote system resources for the execution of
“jobs.” The most common use of GRAM is remote job submission and control.
It is designed to provide a uniform, flexible interface to job scheduling systems.
GRAM does not provide scheduling or resource brokering capabilities. A wide
variety of metaschedulers and resource brokers that leverage GRAM mecha-
nisms have been developed by other projects. WS-GRAM was released in July
2006 and it is expected that the various metaschedulers and resource brokers
of Globus will be integrated into it.

WS-GRAM provides rich job description and resource provisioning capa-
bilities. Among other objectives, such as optimizing throughput by matching
requirements to resources, WS-GRAM can allocate jobs so as to minimize ex-
pected overall latency, given an existing pool of resources. This is the sense in
which we apply it here. Our assumption is that in medical applications, infor-
mation derived from registration has time-value. If it does not return in time
to enter into a physician’s decision-making process, it may have little value at
all. This suggests other problem formulations, which we will examine in the
future, such as ordering the jobs so that the partial results of greatest value are
returned first. This project (in progress) provides a preliminary demonstration
of the registration application together with the WS-GRAM harness.

In the test reported here, each registration job was launched with 16-way
parallelism at the MPI level, on 8 dual-procesor nodes. Up to 11 such parallel
jobs could be executed at once, as mediated by the underlying PBS scheduler
[23]. In the suboptimal, preliminary test reported on here, all jobs in a given
batch must report complete before a subsequent batch is launched.

The result was the reduction in latency of a “sequential” processing of 19
MPI-parallel jobs that required 51.77 minutes to 6.95 minutes in the Grid en-
vironment, a speedup of 7.5.

Our near-term plans call for expansion of this registration test in many di-
mensions. The entire TeraGrid will be used as a resource pool. Our next data
sets will be made up of images of size 512 × 512 × 512, or 1GB each. Each
pairwise registration job (as currently) will be run with tightly coupled SPMD
parallelism. Jobs will be launched individually from a queue based on resource
monitoring. A strategy will be developed for gaining the medically most relevant
information first. Finally, in view of the size of the data sets, a strategy will be
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developed for overcoming transmission latency that is synergistic with the mul-
tilevel character of the registration algorithm, as discussed above. Specifically,
coarse-grid representations of the problem can be sent before the full fine-grid
representations, so that processing can begin while the fine-grid representations
are still en route.

Our longer term objective includes development of parallel algorithms for
registration that are sufficiently asynchronous that the Grid environment can be
employed even within a single registration. This is not yet necessary for medical
images of contemporary sizes, but it is a technology driver. Such algorithms
would be useful for many problems besides real-time registration, which is the
subject of the second part of this paper.

2 The challenge of asynchronous algorithms for Grid
hosting of PDE-based systems

The image registration challenge in the first part of this paper is addressed under
the relevant, but restricted paradigm of SPMD bulk synchronous processing.
There are numerous applications in addition to image registration in which it
is desirable to exploit the Grid to occasionally grab exceptional amounts of
memory for highly resolved simulations, or in which it is desired to take over
exceptional levels of processing power. As an instance of the first, an exceptional
simulation might use a close to first-principles model to calibrate a multiscale
model, which would then be used for the majority of production at a center.
As instances of the second, flood, firespread, or pathogen transport prediction
models might need to be run ahead of real time in emergencies. Or real-time
control of a massive experimental device, such as ITER [18], might be allowed
to take over Grid-availed resources for the exceptional experimental “shot.” In
these contexts, we must consider individual large jobs, not a large ensemble
of small jobs. Historically, the Grid has supported very few claims for success
in this realm. PDE-based simulations are naturally implemented in bulk syn-
chronous mode, in which the work load for each processing element is carefully
matched to its capabilities, so that idleness is minimized at synchronization
points.

Many issues must be addressed to make PDE-simulations a reality for the
dynamic environment of the Grid. One of them is fault tolerance. However,
in the limited scope of this contribution, we assume that processors and net-
works are reliable and seek algorithmic tolerance of dynamic performance, or
actual synergisms between algorithms and the dynamic performance Grid en-
vironment.

2.1 Concurrency through domain decomposition

PDE-based codes are nearly universally parallelized with domain decomposi-
tion – applying a serial algorithm that (approximately or exactly) solves a PDE
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on a given domain so that it solves for a subdomain’s worth of data and nest-
ing this inside of an iterative process that adjusts the values on the interfaces
or overlaps between the subdomains to consistency. Such a decomposition pre-
serves the volume(work)-to-surface(communication) ratio in the weak scaling
limit as work per processor remains fixed and both the work and the number
of processors are scaled in proportion. For domain decomposition methods to
be weak-scalable, it is necessary that the individual problems on subdomains
be well load balanced and that the number of outer iterations be bounded, in-
dependently of problem resolution and processor granularity (one implies the
other) in the limit of weak scaling. Theory constructively showing how to ob-
tain nearly resolution- and granularity-independent convergence rates is well
developed for many problems [27] and freely available software exists that de-
livers this performance in practice [16, 24, 28]. The price of convergence-rate
optimality is often the solution of auxiliary problems in reduced dimensional
spaces. These auxiliary problems are not as scalable as the original union of in-
dependent fine-scale problems, and their implementation requires extreme care.
Nevertheless, a families of multilevel iterative methods whose parameters can
be tuned to application and architecture exist, which are mature in their analy-
sis and software aspects. All such methods, however, presume predictable load
per process since synchronization points are relatively frequent.

For nonlinear problems, a popular family of methods is Newton-Krylov-
Schwarz (NKS) [5]. This is a triply-nested loop domain-decomposed algorithm,
with an outer Newton loop, which evaluates a nonlinear residual vector at a
given solution iterate and solves a linear system with the nonlinear residual
vector as the right-hand side and the Jacobian of the residual as the system
matrix. A multiple of the resulting solution is added to the current iterate.
Krylov iteration is employed to solve the linear system with the Jacobian. Each
Krylov loop begins with an iterate to which it applies a Jacobian-vector prod-
uct and then computes some inner products, which determine coefficients with
which to update the linear iterate. Both the outer Newton and inner Krylov
loops are synchronous and essentially update a vector defined over the do-
main with AXPY operations. Inside of the Krylov loop, subspace iterations of
Schwarz type are employed to precondition the linear system. The Schwarz it-
erations are generally a mixture of multiplicative and additive projections into
subspaces, with the bulk of the work being done concurrently on each processor
within subdomains. To summarize the NKS technique, within each level of the
triply nested loop there is a decomposition into concurrent tasks by domain.
Typically, one subdomain’s worth of work is assigned to each process. Processes
must communicate thin regions near their boundaries with neighbors, and they
must cooperate globally in performing inner products (AllReduce commuta-
tives) and in solving reduced-dimensional problems. Typically, one process is
mapped to each processor, and processors synchronize at the AllReduce points.
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2.2 Algorithmic adaptation

No computer system is well-balanced for all computational tasks since different
tasks (such as concurrent neighbor communication, global reduction, concur-
rent local residual evaluation, concurrent local recurrences, etc.) stress different
parts of the processor-memory-network system. By being aware of which al-
gorithmic phases are limited by which aspect of hardware or system software,
one can adapt algorithms to take advantage of the strengths or mitigate the
weaknesses of given hardware. Detailed phase-by-phase performance analysis
of an unstructured PDE-based code for aerodynamics led to the inspiration of
the Gordon Bell “Special Prize,” a share of which was first awarded to a sub-
set of the co-authors in 1999 [1]. While many performance optimizations were
studied in that and other papers for the massively parallel solution of PDE-
based problems, one parasitic loss of performance that was noted in the strong
scaling limit, but not addressed, was idleness at synchronization bottlenecks.
This idleness was due to the difficulty of load balancing increasingly smaller
and also increasingly less homogeneous partitions. For instance, as subdomains
get smaller, the distribution of ratios of boundary and interface nodes to inte-
rior nodes gets broader. In the context of the Grid, these same synchronization
points will lead to idleness for other reasons, even in weak scaling.

Historically, there have been a number of noteworthy adaptations to high
latency and low bandwidth in parallel systems. Reduction of communication or
replacement of communication with extra work will generally be useful adap-
tations in the Grid environment.

Garbey and Tromeur-Dervout [11] introduced the C(p, j, q) schemes in an
attempt to hide interprocessor latency by extrapolating data messages from
neighboring processes in a time integration process, rather than waiting for
the messages to appear before computing locally with their data as inputs.
Rollbacks were used if the data upon arrival proved to be too inconsistent
with the extrapolated values. Intuitively, this radical procedure has a chance of
being successful, since for the problems considered, the extrapolations have to
be correct in the low-spectrum eigenmodes only. Error in the the high-spectrum
eigenmodes decays rapidly. For a given accuracy-work tradeoff, the technique
has a payoff region.

Cai and Sarkis [6] introduced an algorithm called restricted additive Schwarz
(RAS), which was discovered accidentally by turning off certain communications
while debugging. Observing that not only efficiency per iteration but also con-
vergence rate improved, the researchers were able to prove why, for many prob-
lems, the updates provided by the turned-off communication were unnecessary
and even detrimental. RAS is now the default form of Schwarz preconditioning
in PETSc [24].

Additive versions of algorithms are often available where multiplicative ver-
sions are the default. The additive versions may converge more slowly, but can
sometimes be virtually as good as their mathematically more pedigreed cousins.
The AFACx version of the asynchronous fast adaptive composite grid method
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is shown in [21] to be nearly as good as AFAC in practice, for instance. Such
algorithms have received a bad rap historically due to theory which can be
pessimistic in the worst case [8].

Cai and Keyes [7] introduced a nonlinear form of Schwarz preconditioning,
called Additive Schwarz Preconditioned Inexact Newton (ASPIN), which was
motivated by nonlinear convergence theory, but turns out to relax the frequency
of global synchronization in Newton-Krylov methods rather dramatically, while
simultaneously unbalancing domain-decomposed work. Essentially, the method
introduces process-scale Newton iterations inside of the outer Newton iteration.
Most of the work of the nonlinear convergence shifts from the global outer it-
eration to the local inner iterations, with the result that the outer iteration
converges in very few Newton steps, and therefore few global synchronizations.
There is often a substantial reduction of work overall, but more importantly,
the work that remains occurs in local subsets of communicating processors.
However, unlike the traditional Newton-Krylov-Schwarz method, whose work-
per-processor can be well load-balanced up to the limit of too small the average
size of the subdomains on each processor, ASPIN has an unpredictable and po-
tentially poorly balanced distribution of subdomain work. This is because the
different nonlinear systems that are iterated to convergence on each subdomain
may take different numbers of internal iterations. Fortunately, these internal
iterations are not synchronized with those of other subdomains. The processors
governing different subdomains synchronize only at outer loops. On a tightly
coupled parallel machine, ASPIN is difficult to recommend, because of this fea-
ture of unbalanced inner loop work. However, the structure of the computation
lends itself well to the Grid. In the spirit of Eisenhower’s maxim that “one
way to solve a big problem is to make it bigger,” ASPIN folds its uncertain
load imbalance into the uncertain performance guarantee of the processors in a
Grid-based computation, and harvests cycles when available. The tools created
as part of the WS-GRAM infrastructure to monitor and predict availability and
so allocate work can be combined with tools that predict the work in ASPIN
processes based on recent history so that a collection of ASPIN processes can
in principle share resources synergistically with other Grid-enabled jobs.

Transcending particular algorithmic inventions, we also propose an asyn-
chronous programming style that loans itself to many bulk synchronous al-
gorithms that must confront inefficiency through idleness at synchronization
points, whether due to internal work imbalance or external dynamic availability.
The synchronization in many scientific simulation codes, including PDE-based
codes, is artifactual. At a synchronization point there is often lots of work ready
to perform whose data needs are completely local; however conventional pro-
gramming styles do not allow an independent user thread from the same overall
process to begin executing while the synchronizing thread is blocked.

The critical path in a Newton-Krylov code, abstracted to a sufficiently high
level is: . . ., linear_solve, bound_step, update, linear_solve, bound_step,
update, . . .. We often insert into the critical path tasks that could be performed
less synchronously, on which the tasks above do not critically depend, such as
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refreshing the Jacobian with which the linear solver is performed, or refresh-
ing the preconditioner for that Jacobian. It is well studied, theoretically and
in practice, that Newton and Krylov methods are robust with respect to less
frequent updates to these linear operators than once per step, under many cir-
cumstances. Convergence degrades if refreshing is long postponed, but for the
sake of synchronization, either of these updates could be invested in to varying
degrees. We also frequently insert global convergence testing and parameter
adaptation on the critical path above more frequently than necessary. They
can be partially completed on free cycles and thrown onto the critical path less
frequently than is generally done today. Other tasks such as I/O, data com-
pression or archiving, data visualization, or data mining, which must be or can
be performed directly on the parallel cluster, represent useful work that is, to
a significant degree, not tightly synchronized with respect to the solution loop
above.

To take full advantage of such asynchronous algorithms, we need to de-
velop greater expressiveness in scientific programming, by creating threads with
relaxed data requirements and dynamically adjusting the relative priority of
threads. This will require “associative communication” models such as the one
recently addressed in [4].

3 Convergence of Grid computing and scientific
computing

As illustrated in the context of medical image registration, there are numerous
scientific applications today that can exploit the Grid in all of its heterogeneity
without ill effect and to advantage, even in a hybrid model of nearly indepen-
dent batched jobs each of which is a tightly coupled application. Tools such
as WS-GRAM make it increasingly practical to schedule the independent jobs
in such a way as to meet real time applications requirements, or at least to
know when it is physically impractical to meet them, so that cycles are not
wasted and alternatives not deferred. Many of the agendae of large-scale simu-
lation share workflow characteristics with the image registration task considered
herein. Computational science is not about individual large-scale analyses, done
fast and “thrown over the wall.” Both results and their sensitivities are desired;
often multiple operation points to be simulated are known a priori, rather than
sequentially. Sensitivities may be fed back into optimization process. Full PDE
analyses may also be inner iterations in a multidisciplinary computation. In
such contexts, “petaflop/s” may mean 1,000 analyses running somewhat asyn-
chronously with respect to each other, each at 1 Tflop/s – clearly a less daunting
challenge and one that has better synchronization properties for exploiting “The
Grid” – than one analysis running at 1 Pflop/s.

However, even perfect knowledge of resource capabilities at every moment
and perfect load balancers will not redeem the Grid for all SPMD implementa-
tions of PDE simulations. The cost of rebalancing is frequently too large to do
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on the short intervals required in the dynamic environment of the Grid, and the
Amdahl penalty for failing to rebalance is fatal. A combination of better Grid
monitoring and allocation tools and less synchronous algorithms is required for
the greatest ultimate success.

Less synchronous algorithms for traditionally tightly coupled PDE-based
simulations are highly desirable for reasons independent of the Grid. For the
petascale machines of which we expect to take delivery in 2008 and beyond,
consisting of 105 and more processors, it will be highly desirable to have such
methods.

Natural forces with both the Grid community and the PDE simulation com-
munity are converging independently towards a rendezvous that it is already
practical at some scale. We are cautiously optimistic about a much more sig-
nificant rendezvous ahead.
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1

Observations on WoCo9

William D. Gropp

Mathematics and Computer Science Division
Argonne National Laboratory

The Ninth Working Conference on Grid-Based Problem Solving Environments
brought together researchers and practitioners interested in the use of nu-
merical software in a distributed setting. This note summarizes some of the
successes and challenges in working with numerical software in a Grid envi-
ronment. This is not a comprehensive list of the contributions in the meeting;
rather, it provides one person’s impressions of the common themes and issues.
In addition, some items were noticeable by their absence, and a number of
these are discussed here. Opportunities for future work also are described.

1.1 Successes

First and foremost, this meeting illustrated the many successes of numerical
computing on the Grid. Grids are in everyday use for scientific applications.
Examples described in this workshop included MediGrid, NAREGEI Nano,
LEAD, GridSolve, and St Germain. Many of these are data-centric, bringing
together data and other resources that are distributed around the world.

One interesting use of the Grid is to address the dynamic and real-time
access to resources for urgent computations, such as disasters, and for fluctu-
ating demand, such as occasional real-time data acquisition and processing.

Talks at this meeting also described the development of both superstruc-
tures and infrastructures that have been developed to ease the creation of
effective Grid tools. Partly because of this wealth of tools, many Grid-based
services are being provided.

Another positive note was the absence of debate about the relative advan-
tages of the Web and the Grid—this subject was not seen as important to the
users, who simply want to get their work done. In addition, there was no con-
fusion about the differences between a specification and an implementation,
and hence the discussion remained focused on appropriate issues.



1.2 Challenges

The talks emphasized that many challenges remain, including the following:
Security (either the lack of it or the complexity and inconvenience of

providing and dealing with it). This remains an unsolved problem in the sense
that the available approaches are too cumbersome and too fragile.

Fragmentation and premature standardization. In some cases, there
are clearly too many different projects (fragmentation). In others, such as
the Grid RPC used in the GridSolve project, premature standardization has
taken place, with the standard getting in front of thorough understanding of
practical needs.

Precise syntax, semantics, and effective descriptions. These are
often still missing, as systems try to “give users what they want.” This is the
same trap that has often made complex programming in shell languages so
difficult.

Scalability of solutions. Some systems work well only because they have
not been widely adopted. Part of the problem is in the implementation, but
part also may be in the design; the HPC community has learned that scal-
ability requires careful, deliberate design. This point was summed up in one
comment made during the meeting: “Scalability doesn’t happen by accident.”

1.3 What Wasn’t Discussed

Also interesting was what received little or no discussion. Like the dog that
did not bark in the famous Sherlock Holmes story, the lack of discussion may
indicate an unsolved problem.

In particular, numerical properties and the interactions between compo-
nents received little attention. It may be important to preserve conservation
laws and avoid numerical instabilities caused by exciting parasitic modes.
Yet only Norris’s presentation on computational quality of service explicitly
addressed some of these issues; there was little discussion of the deeper math-
ematical issues (though some came up in Friday’s presentations). The session
on dynamic data-driven application systems did touch on this topic, but in
terms of dynamic control of a computation, rather than the establishment of
“contracts” of numerical properties between components.

Also nearly absent were quantified measures of comparison between ap-
proaches. The lack of such measures makes it hard to evaluate progress or
compare different approaches. This situation is a striking contrast to that in
high-performance computing, where there are many (sometimes controversial)
measures of comparison. Until there is more quantification, the development
of Grid- or Web-based systems will remain more of an art than a science.
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1.4 Opportunities

The meeting clearly identified a number of opportunities, including the fol-
lowing:

1. Develop performance models and measures of success. How can
a researcher compare different approaches? A partial ordering, perhaps
a multidimensional ordering, would be helpful. This would enable re-
searchers to quantify design decisions and address real performance issues,
such as scalability, that arise when Grid applications become successful.

2. Develop community standards and best practices. Vouk’s talk on
workflow tools described a large number of current tools. This area appears
to be ripe for discussing community standards that would allow the next
generation of workflow tools to build on current results. Many of the
other talks discussed aspects of mathematical software that could benefit
from even informal community standards or best practices in software
engineering.

3. Explore collaborations in developer tools. For example, the GAT/SAGA,
NAREGI-PSE, and Java CoG project have all developed their own sets
of tools for building Grid- or Web-based applications; other projects have
developed their own tools based on lower-level tools, such as using Perl
scripts or ssh. While concurrent development is valuable for exploring
different approaches and gaining experience, we should be moving to the
next generation of tools, building on a common basis. More collaborations
in these tools would help in this effort.

4. Use the Grid to develop communities. Can we use the Grid to dis-
cover scientists who are trying to use the Grid or Web in a similar way—for
example, using data-mining techniques applied to project Web pages and
publications to identify people who should at least check out one another’s
Web sites.

As this brief summary shows, the working conference provided a stimulat-
ing and fruitful experience for the participants.
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Future Directions for Numerical Software 
Research – Comments during Discussions at 

WoCo9, Prescott, AZ, July 16-21, 2006

Brian T. Smith 
Numerica 21 Incorporated 

Angel Fire, New Mexico, USA, carbess@swcp.com, 

1 Introduction 

During the discussion periods, various people expressed the concern that numerical 
software development had become poorly supported over the past decade, with 
funding agencies seeking projects that seem to ignore the development of algorithms 
and software for numerical computations. In the past, the community has emphasized 
the development of mathematical software libraries. Currently, there appears to be no 
interest in that mode of presentation and mode of access to our numerical software 
by the application community.  The suggestion by Ron Boisvert and others was the 
Grid services may provide the new mode of access. This note discusses the relevant 
issues on the topic as expressed in conversation at the meeting and considered with 
friends since. 

What is at issue here is that numerical software is hidden or buried in packages 
and accessed through interfaces that do not make the numerical software apparent. 
Because research support by the funding agencies has turned to complete application 
solving environments where the nature, form, and quality of the software is not 
directly apparent to users or those who support the development of software, support 
for basic numerical software has waned. 

Calls for new research are for software and algorithms that work on 
computational grids.  Approaches that address complete applications over the 
computational grids are paramount. In addition, there is the need for interfaces to 
numerical codes that are easy to use. But, libraries, with long calling sequences that 
provided complete control over the algorithm, do not address these needs. Many of 
us believe that libraries of well-tested procedures provide the building blocks for 
meeting the needs, but such procedures require significant expertise to use them.  
However, in many cases, versions of these libraries do port across the machines of 
most of the grid but do not necessarily provide the top performance for all machines. 



The numerical software community has in the past, with a few exceptions, 
emphasized portability and transportability of our software. Portable algorithmic 
efficiency has been a goal but code tuning to particular architectures has not always 
been a major goal, although there have been well-known exceptions. As a result, 
high quality portable software is available to the application integrators from open 
source repositories, published papers, and commercial vendors such as NAG 
(Numerical Algorithms Group) and VNI (Visual Numerics Incorporated). The 
software from open source repositories and published papers typically is not tuned 
for high performance; notable exceptions are ATLAS (Automatically Tuned Linear 
Algebra Software) and FFTW (Fast Fourier Transformations from the West). The 
result is that many applications are "rolling their own software" from open sources 
because integrators have control over the software, including porting and 
performance, to some extent. The need for new basic numerical algorithms is not 
paramount. Only those application areas that recognize that their numerical codes are 
the bottle necks request or demand research in new and better software. And that 
recognition does not happen often. 

2 Suggestion 

Given the above scenario and to rejuvenate interest in numerical software, I made 
the specific suggestion described below that recommends a new tack be taken by our 
community. The suggestion assumes the interest and dominance of grid computing 
will continue and that this form of computing will provide lots of available cycles. 

A major need in scientific applications, in my opinion, is software that evaluates 
the accuracy of the computed results or more importantly the sensitivity of the 
numerical results to the data and the platforms on which the computation occurs. 
(Recall on a computational grid that you may not know on what machine the 
computation occurred or be able to specify what machine it runs on.)  Such software 
would run in tandem with the application code, giving assessments on the sensitivity 
of the results to small errors (rounding error, say) or errors in the data specified by 
the application. For certain numerical areas, we know how to do this; for example, 
matrix condition number estimators [1] can be used to indicate how sensitive a 
solution to a system of linear equations is to changes in the matrix elements or right 
hand sides, and similarly for the matrix eigenvalue problem [2]. Recently, Enright 
published two papers [3,4] describing techniques on how to verify the accuracy of 
approximate solutions for ordinary differential equations. Higham's book [5] covers 
many of the possible approaches, particularly for the optimization problem. The 
recent emphasis on noise estimation in optimization problems is likely to provide 
algorithms and software that address the problem of estimating the accuracy and 
reliability of computed solutions to optimization problems. Of course, this topic is 
not new; see [6] for an early introduction to the problem in estimating the reliability 
of computed solutions. 

Software that propagates this sensitivity through the subsequent computations by 
the application would be required. Similar sensitivity estimates are available for 
ordinary differential equations, polynomial root finding and other computational 
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processes. The numerical analysis and investigation of such techniques were studied 
by a number of early numerical analysis pioneers (e.g. Wilkinson, Kahan, Cody, 
etc.), often related to their experience with computing by hand machines. Review of 
their early papers may offer helpful starting points for present-day researchers. 

What is needed then is research that provides the techniques for computing the 
sensitivity and propagating its effect through remaining computations. The approach 
of interval arithmetic may come to mind here but my belief is that such an approach 
should be used only when other more appropriate techniques are not available. The 
research I propose would lead to software that can run in tandem on available 
processors on the grid with the application, providing an assessment of the quality of 
the computed results. Ideally, one may be able to make such an assessment available 
as a grid service. It would no doubt use existing libraries of basic numerical 
procedures that we currently have and are developing, but needs to be presented to 
grid applications in an easy to use form. 
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